Psychology Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1645
Browse
Item Domesticated Dogs’ (Canis familiaris) Response to Dishonest Human Points(2010) Kundey, Shannon M.A.; De Los Reyes, Andres; Arbuthnot, Jessica; Allen, Rebecca; Coshun, Ariel; Molina, Sabrina; Royer, EricaPointing is a conventional communicative gesture used by humans to direct others’ attention to an environmental feature. Several researchers have argued that pointing becomes so ingrained for humans from a young age that children often have difficulty interpreting the gesture in a novel way. Recent research suggests domestic dogs are also sensitive to human gestures (including points) and proficient in recognizing and acting on humans’ visual attention. We explored the role of pointing in dogs’ choice behavior and whether dogs, like human children, have difficulty interpreting the gesture novelly. In Experiment 1, we explored whether dogs would differentially follow a static human point when it was administered by a familiar or unfamiliar individual and that individual indicated or failed to indicate the correct location of a food reward. The results indicated dogs chose the container specified by the demonstrators’ point in the honest and dishonest condition. Demonstrator familiarity did not alter performance. In Experiment 2, we compared dogs’ propensity to follow a static point versus other cues (momentary point, standing location) when the cue never indicated the correct location of a food reward, which was either visible or hidden during choice. The results suggested dogs did not inhibit their approach to a location indicated by a deceptive static point even when the location of a reward was visibly available during choice. However, dogs used a deceptive momentary point or standing location to locate food in both visible and hidden trials. In Experiment 3, we explored if dogs could overcome their tendency to follow a deceptive static point. These results indicated dogs learned to inhibit their approach to a deceptive static point when the reward was visible during choice. However, when information about the reward’s location was later hidden, dogs reverted to following the demonstrator’s static point.Item Domesticated dogs’ (Canis familiaris) use of the solidity principle(2009) Kundey, Shannon M.A.; De Los Reyes, Andres; Taglang, Chelsea; Baruch, Ayelet; German, RebeccaOrganisms must often make predictions about the trajectories of moving objects. However, often these objects become hidden. To later locate such objects, the organism must maintain a representation of the object in memory and generate an expectation about where it will later appear. We explored adult dogs’ knowledge and use of the solidity principle (that one solid object cannot pass through another solid object) by evaluating search behavior. Subjects watched as a treat rolled down an inclined tube into a box. The box either did or did not contain a solid wall dividing it in half. To find the treat, subjects had to modify their search behavior based on the presence or absence of the wall, which either did or did not block the treat’s trajectory. Dogs correctly searched the near location when the barrier was present and the far location when the barrier was absent. They displayed this behavior from the first trial, as well as performed correctly when trial types were intermingled. These results suggest that dogs direct their searches in accordance with the solidity principle.Item Domesticated dogs’ (Canis familiaris) use of the solidity principle(2010-05) Kundey, Shannon M.A.; De Los Reyes, Andres; Taglang, Chelsea; Baruch, Ayelet; German, RebeccaOrganisms must often make predictions about the trajectories of moving objects. However, often these objects become hidden. To later locate such objects, the organism must maintain a representation of the object in memory and generate an expectation about where it will later appear. We explored adult dogs’ knowledge and use of the solidity principle (that one solid object cannot pass through another solid object) by evaluating search behavior. Subjects watched as a treat rolled down an inclined tube into a box. The box either did or did not contain a solid wall dividing it in half. To find the treat, subjects had to modify their search behavior based on the presence or absence of the wall, which either did or did not block the treat’s trajectory. Dogs correctly searched the near location when the barrier was present and the far location when the barrier was absent. They displayed this behavior from the first trial, as well as performed correctly when trial types were intermingled. These results suggest that dogs direct their searches in accordance with the solidity principle.