Global, Environmental, and Occupational Health Research Works

Permanent URI for this collection


Recent Submissions

Now showing 1 - 20 of 58
  • Item
    Engaging a Chemical Disaster Community: Lessons from Graniteville
    (MDPI, 2014-05-27) Abara, Winston; Wilson, Sacoby; Vena, John; Sanders, Louisiana; Bevington, Tina; Culley, Joan M.; Annang, Lucy; Dalemarre, Laura; Svendsen, Erik
    Community engagement remains a primary objective of public health practice. While this approach has been adopted with success in response to many community health issues, it is rarely adopted in chemical disaster response. Empirical research suggests that management of chemical disasters focuses on the emergency response with almost no community engagement for long-term recovery. Graniteville, an unincorporated and medically underserved community in South Carolina was the site of one of the largest chlorine exposures by a general US population. Following the immediate response, we sought community participation and partnered with community stakeholders and representatives in order to address community-identified health and environmental concerns. Subsequently, we engaged the community through regular town hall meetings, harnessing community capacity, forming coalitions with existing local assets like churches, schools, health centers, and businesses, and hosting community-wide events like health picnics and screenings. Information obtained from these events through discussions, interviews, and surveys facilitated focused public health service which eventually transitioned to community-driven public health research. Specific outcomes of the community engagement efforts and steps taken to ensure sustainability of these efforts and outcomes will be discussed.
  • Item
    Occupational Exposure to Staphylococcus aureus and Enterococcus spp. among Spray Irrigation Workers Using Reclaimed Water
    (MDPI, 2014-04-17) Rosenberg Goldstein, Rachel E.; Micallef, Shirley A.; Gibbs, Shawn G.; He, Xin; George, Ashish; Sapkota, Amir; Joseph, Sam W.; Sapkota, Amy R.
    As reclaimed water use expands, it is important to evaluate potential occupational health risks from exposure to this alternative water source. We compared odds of colonization with methicillin-resistant Staphylococcus aureus (MRSA), methicillin-susceptible S. aureus (MSSA), vancomycin-resistant enterococci (VRE), and vancomycin-susceptible enterococci (VSE) between spray irrigation workers using reclaimed water and office worker controls. Nasal and dermal swabs from 19 spray irrigation workers and 24 office worker controls were collected and analyzed for MRSA, MSSA, VRE, and VSE. Isolates were confirmed using standard biochemical tests and polymerase chain reaction assays. Antimicrobial susceptibility testing was performed by Sensititre® microbroth dilution. Data were analyzed by two-sample proportion, chi-square, Fisher’s exact tests, and logistic regression. No MRSA or VRE were detected in any samples. MSSA was detected in 26% and 29% of spray irrigators and controls, respectively. VSE was detected in 11% and 0% of spray irrigation workers and controls, respectively. The adjusted odds of MSSA, multidrug-resistant MSSA, and either MSSA or VSE colonization were greater among spray irrigation workers, however results were not statistically significant. Future studies with larger sample sizes are needed to further evaluate this relationship.
  • Item
    A Critical Review of an Authentic and Transformative Environmental Justice and Health Community — University Partnership
    (MDPI, 2014-12-11) Wilson, Sacoby; Campbell, Dayna; Dalemarre, Laura; Fraser-Rahim, Herb; Williams, Edith
    Distressed neighborhoods in North Charleston (SC, USA) are impacted by the cumulative effects of multiple environmental hazards and expansion of the Port of Charleston. The Low Country Alliance for Model Communities (LAMC) built an environmental justice partnership to address local concerns. This case study examines the process of building and sustaining a successful transformative and authentic community-university partnership. We apply the framework established by Community-Campus Partnerships for Health (CCPH), focusing on four of the nine principles of Good Practice of Community Campus Partnerships.
  • Item
    Antibiotic Concentrations Decrease during Wastewater Treatment but Persist at Low Levels in Reclaimed Water
    (MDPI, 2017-06-21) Kulkarni, Prachi; Olson, Nathan D.; Raspanti, Greg A.; Rosenberg Goldstein, Rachel E.; Gibbs, Shawn G.; Sapkota, Amir; Sapkota, Amy R.
    Reclaimed water has emerged as a potential irrigation solution to freshwater shortages. However, limited data exist on the persistence of antibiotics in reclaimed water used for irrigation. Therefore, we examined the fate of nine commonly-used antibiotics (ampicillin, azithromycin, ciprofloxacin, linezolid, oxacillin, oxolinic acid, penicillin G, pipemidic acid, and tetracycline) in differentially treated wastewater and reclaimed water from two U.S. regions. We collected 72 samples from two Mid-Atlantic and two Midwest treatment plants, as well as one Mid-Atlantic spray irrigation site. Antibiotic concentrations were measured using liquid-chromatography- tandem mass spectrometry. Data were analyzed using Mann-Whitney-Wilcoxon tests and Kruskal Wallis tests. Overall, antibiotic concentrations in effluent samples were lower than that of influent samples. Mid-Atlantic plants had similar influent but lower effluent antibiotic concentrations compared to Midwest plants. Azithromycin was detected at the highest concentrations (of all antibiotics) in influent and effluent samples from both regions. For most antibiotics, transport from the treatment plant to the irrigation site resulted in no changes in antibiotic concentrations, and UV treatment at the irrigation site had no effect on antibiotic concentrations in reclaimed water. Our findings show that low-level antibiotic concentrations persist in reclaimed water used for irrigation; however, the public health implications are unclear at this time.
  • Item
    Prevalence of Microbiological and Chemical Contaminants in Private Drinking Water Wells in Maryland, USA
    (MDPI, 2018-08-07) Murray, Rianna T.; Rosenberg Goldstein, Rachel E.; Maring, Elisabeth F.; Pee, Daphne G.; Aspinwall, Karen; Wilson, Sacoby M.; Sapkota, Amy R.
    Although many U.S. homes rely on private wells, few studies have investigated the quality of these water sources. This cross-sectional study evaluated private well water quality in Maryland, and explored possible environmental sources that could impact water quality. Well water samples (n = 118) were collected in four Maryland counties and were analyzed for microbiological and chemical contaminants. Data from the U.S. Census of Agriculture were used to evaluate associations between the presence of animal feeding operations and well water quality at the zip code level using logistic regression. Overall, 43.2% of tested wells did not meet at least one federal health-based drinking water standard. Total coliforms, fecal coliforms, enterococci, and Escherichia coli were detected in 25.4%, 15.3%, 5.1%, and 3.4% of tested wells, respectively. Approximately 26%, 3.4%, and <1% of wells did not meet standards for pH, nitrate-N, and total dissolved solids, respectively. There were no statistically significant associations between the presence of cattle, dairy, broiler, turkey, or aquaculture operations and the detection of fecal indicator bacteria in tested wells. In conclusion, nearly half of tested wells did not meet federal health-based drinking water standards, and additional research is needed to evaluate factors that impact well water quality. However, homeowner education on well water testing and well maintenance could be important for public health.
  • Item
    Methods for Evaluating the Combined Effects of Chemical and Nonchemical Exposures for Cumulative Environmental Health Risk Assessment
    (MDPI, 2018-12-10) Payne-Sturges, Devon C.; Scammell, Madeleine K.; Levy, Jonathan I.; Cory-Slechta, Deborah A.; Symanski, Elaine; Carr Shmool, Jessie L.; Laumbach, Robert; Linder, Stephen; Clougherty, Jane E.
    Cumulative risk assessment (CRA) has been proposed as a means of evaluating possible additive and synergistic effects of multiple chemical, physical and social stressors on human health, with the goal of informing policy and decision-making, and protecting public health. Routine application of CRA to environmental regulatory and policy decision making, however, has been limited due to a perceived lack of appropriate quantitative approaches for assessing combined effects of chemical and nonchemical exposures. Seven research projects, which represented a variety of disciplines, including population health science, laboratory science, social sciences, geography, statistics and mathematics, were funded by the US Environmental Protection Agency (EPA) to help address this knowledge gap. We synthesize key insights from these unique studies to determine the implications for CRA practice and priorities for further research. Our analyses of these seven projects demonstrate that the necessary analytical methods to support CRA are available but are ultimately context-dependent. These projects collectively provided advancements for CRA in the areas of community engagement, characterization of exposures to nonchemical stressors, and assessment of health effects associated with joint exposures to chemical and psychosocial stressors.
  • Item
    Rapid Health Impact Assessment of a Proposed Poultry Processing Plant in Millsboro, Delaware
    (MDPI, 2019-09-16) Baskin-Graves, Leah; Mullen, Haley; Aber, Aaron; Sinisterra, Jair; Ayub, Kamran; Amaya-Fuentes, Roxana; Wilson, Sacoby
    In 2013, Allen Harim Foods purchased the former site of a Vlasic Pickle plant in Millsboro, Delaware, and proposed to convert the site into a poultry processing plant that would process approximately two million birds weekly. This generated concerns about the proposed plant’s potential to impact health and quality of life among residents. We conducted a rapid health impact assessment (HIA) of the proposed plant to assess baseline environmental health issues in the host community and projected impacts. The scoping and baseline assessment revealed social, economic, and health disparities in the region. We also determined that residents in the area were already underserved and overburdened with pollution from multiple environmental hazards near the proposed plant including two sites contaminated with hazardous wastes, a power plant, and another poultry processing plant. The projected size and amount of poultry to be processed at the plant would likely cause increased levels of air, soil and water pollution, additional odor issues, and increased traffic and related pollution and safety issues. The information generated from the HIA formed the basis of a campaign to raise awareness about potential problems associated with the new facility and to foster more engagement of impacted residents in local decision-making about the proposed plant. In the end, the HIA helped concerned residents oppose the new poultry processing plant. This case study provides an example of how HIAs can be used as a tool to educate residents, raise awareness about environmental justice issues, and enhance meaningful engagement in local environmental decision-making processes.
  • Item
    Experiential Graduate Course Prepares Transdisciplinary Future Leaders to Innovate at the Food-Energy-Water Nexus
    (MDPI, 2021-01-29) Murray, Rianna Teresa; Marbach-Ad, Gili; McKee, Kelsey; Sapkota, Amy Rebecca
    Food, energy and water (FEW) systems are critically stressed worldwide. These challenges require transformative science, engineering and policy solutions. However, cross-cutting solutions can only arise through transdisciplinary training of our future science and policy leaders. The University of Maryland Global STEWARDS National Science Foundation Research Traineeship seeks to meet these needs. This study assessed a foundational component of the program: a novel, experiential course focused on transdisciplinary training and communication skills. We drew on data from the first two offerings of the course and utilized a mixed-method, multi-informant evaluation that included validated pre–post surveys, individual interviews and focus groups. Paired Mann–Whitney–Wilcoxon tests were used to compare pre- and post-means. After the course, students reported improvements in their ability to identify strengths and weaknesses of multiple FEW nexus disciplines; articulate interplays between FEW systems at multiple scales; explain to peers the most important aspects of their research; and collaborate with scientists outside their field. Students also reported improvements in their oral and written communication skills, along with their ability to critically review others’ work. Our findings demonstrate that this graduate course can serve as an effective model to develop transdisciplinary researchers and communicators through cutting edge, experiential curricular approaches.
  • Item
    Global Population Exposed to Extreme Events in the 150 Most Populated Cities of the World: Implications for Public Health
    (MDPI, 2021-02-01) Li, Linze; Jiang, Chengsheng; Murtugudde, Raghu; Liang, Xin-Zhong; Sapkota, Amir
    Climate change driven increases in the frequency of extreme heat events (EHE) and extreme precipitation events (EPE) are contributing to both infectious and non-infectious disease burden, particularly in urban city centers. While the share of urban populations continues to grow, a comprehensive assessment of populations impacted by these threats is lacking. Using data from weather stations, climate models, and urban population growth during 1980–2017, here, we show that the concurrent rise in the frequency of EHE, EPE, and urban populations has resulted in over 500% increases in individuals exposed to EHE and EPE in the 150 most populated cities of the world. Since most of the population increases over the next several decades are projected to take place in city centers within low- and middle-income countries, skillful early warnings and community specific response strategies are urgently needed to minimize public health impacts and associated costs to the global economy.
  • Item
    Framing Environmental Health Decision-Making: The Struggle over Cumulative Impacts Policy
    (MDPI, 2021-04-09) Payne-Sturges, Devon C.; Sangaramoorthy, Thurka; Mittmann, Helen
    Little progress has been made to advance U.S. federal policy responses to growing scientific findings about cumulative environmental health impacts and risks, which also show that many low income and racial and ethnic minority populations bear a disproportionate share of multiple environmental burdens. Recent scholarship points to a “standard narrative” by which policy makers rationalize their slow efforts on environmental justice because of perceived lack of data and analytical tools. Using a social constructivist approach, ethnographic research methods, and content analysis, we examined the social context of policy challenges related to cumulative risks and impacts in the state of Maryland between 2014 and 2016. We identified three frames about cumulative impacts as a health issue through which conflicts over such policy reforms materialize and are sustained: (a) perceptions of evidence, (b) interpretations of social justice, and (c) expectations of authoritative bodies. Our findings illustrate that policy impasse over cumulative impacts is highly dependent on how policy-relevant actors come to frame issues around legislating cumulative impacts, rather than the “standard narrative” of external constraints. Frame analysis may provide us with more robust understandings of policy processes to address cumulative risks and impacts and the social forces that create health policy change.
  • Item
    Development and Limitations of Exposure Biomarkers to Dietary Contaminants Mycotoxins
    (MDPI, 2021-04-28) Turner, Paul C.; Snyder, Jessica A.
    Mycotoxins are toxic secondary fungal metabolites that frequently contaminate cereal crops globally, presenting exposure hazards to humans and livestock in many settings. The heterogeneous distribution of mycotoxins in food restricts the usefulness of food sampling and intake estimates for epidemiological studies, making validated exposure biomarkers better tools for informing epidemiological investigations. While biomarkers of exposure have served important roles for understanding the public health impact of mycotoxins such as aflatoxins (AF), the science of biomarkers must continue advancing to allow for better understanding of mycotoxins’ roles in the etiology of disease and the effectiveness of mitigation strategies. This review will discuss mycotoxin biomarker development approaches over several decades for four toxins of significant public health concerns, AFs, fumonisins (FB), deoxynivalenol (DON), and ochratoxin A (OTA). This review will also highlight some knowledge gaps, key needs and potential pitfalls in mycotoxin biomarker interpretation.
  • Item
    Laboratory Chamber Evaluation of Flow Air Quality Sensor PM2.5 and PM10 Measurements
    (MDPI, 2022-06-15) Crnosija, Natalie; Zamora, Misti Levy; Rule, Ana M.; Payne-Sturges, Devon
    The emergence of low-cost air quality sensors as viable tools for the monitoring of air quality at population and individual levels necessitates the evaluation of these instruments. The Flow air quality tracker, a product of Plume Labs, is one such sensor. To evaluate these sensors, we assessed 34 of them in a controlled laboratory setting by exposing them to PM10 and PM2.5 and compared the response with Plantower A003 measurements. The overall coefficient of determination (R2) of measured PM2.5 was 0.76 and of PM10 it was 0.73, but the Flows’ accuracy improved after each introduction of incense. Overall, these findings suggest that the Flow can be a useful air quality monitoring tool in air pollution areas with higher concentrations, when incorporated into other monitoring frameworks and when used in aggregate. The broader environmental implications of this work are that it is possible for individuals and groups to monitor their individual exposure to particulate matter pollution.
  • Item
    Disparities in Toxic Chemical Exposures and Associated Neurodevelopmental Outcomes: A Scoping Review and Systematic Evidence Map of the Epidemiological Literature
    (2023-09-27) Payne-Sturges, Devon C.; Taiwo, Tanya Khemet; Ellickson, Kristie; Mullen, Haley; Tchangalova, Nedelina ; Anderko, Laura ; Chen, Aimin ; Swanson, Maureen
    BACKGROUND: Children are routinely exposed to chemicals known or suspected of harming brain development. Targeting Environmental Neuro-Development Risks (Project TENDR), an alliance of more than 50 leading scientists, health professionals, and advocates, is working to protect children from these toxic chemicals and pollutants, especially the disproportionate exposures experienced by children from families with low incomes and families of color. OBJECTIVE: This scoping review was initiated to map existing literature on disparities in neurodevelopmental outcomes for U.S. children from population groups who have been historically economically/socially marginalized and exposed to seven exemplar neurotoxicants: combustion-related air pollution (AP), lead (Pb), mercury (Hg), organophosphate pesticides (OPs), phthalates (Phth), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). METHODS: Systematic literature searches for the seven exemplar chemicals, informed by the Population, Exposure, Comparator, Outcome (PECO) framework, were conducted through 18 November 2022, using PubMed, CINAHL Plus (EBSCO), GreenFILE (EBSCO), and Web of Science sources. We examined these studies regarding authors’ conceptualization and operationalization of race, ethnicity, and other indicators of sociodemographic and socioeconomic disadvantage; whether studies presented data on exposure and outcome disparities and the patterns of those disparities; and the evidence of effect modification by or interaction with race and ethnicity. RESULTS: Two hundred twelve individual studies met the search criteria and were reviewed, resulting in 218 studies or investigations being included in this review. AP and Pb were the most commonly studied exposures. The most frequently identified neurodevelopmental outcomes were cognitive and behavioral/psychological. Approximately a third (74 studies) reported investigations of interactions or effect modification with 69% (51 of 74 studies) reporting the presence of interactions or effect modification. However, less than half of the studies presented data on disparities in the outcome or the exposure, and fewer conducted formal tests of heterogeneity. Ninety-two percent of the 165 articles that examined race and ethnicity did not provide an explanation of their constructs for these variables, creating an incomplete picture. DISCUSSION: As a whole, the studies we reviewed indicated a complex story about how racial and ethnic minority and low-income children may be disproportionately harmed by exposures to neurotoxicants, and this has implications for targeting interventions, policy change, and other necessary investments to eliminate these health disparities. We provide recommendations on improving environmental epidemiological studies on environmental health disparities. To achieve environmental justice and health equity, we recommend concomitant strategies to eradicate both neurotoxic chemical exposures and systems that perpetuate social inequities.
  • Item
    Both parents matter: a national-scale analysis of parental race/ethnicity, disparities in prenatal PM2.5 exposures and related impacts on birth outcomes
    (Springer Nature, 2022-05-06) Payne-Sturges, Devon C.; Puett, Robin; Cory-Slechta, Deborah A.
    Most U.S. studies that report racial/ethnic disparities in increased risk of low birth weight associated with air pollution exposures have been conducted in California or northeastern states and/or urban areas, limiting generalizability of study results. Few of these studies have examined maternal racial/ethnic groups other than Non-Hispanic Black, non-Hispanic White and Hispanic, nor have they included paternal race. We aimed to examine the independent effects of PM2.5 on birth weight among a nationally representative sample of U.S. singleton infants and how both maternal and paternal race/ethnicity modify relationships between prenatal PM2.5 exposures and birth outcomes. We used data from the Early Childhood Longitudinal Study, Birth Cohort (ECLS–B), a longitudinal nationally representative cohort of 10,700 U.S. children born in 2001, which we linked to U.S.EPA’s Community Multi-scale Air Quality (CMAQ)-derived predicted daily PM2.5 concentrations at the centroid of each Census Bureau Zip Code Tabulation Area (ZCTA) for maternal residences. We examined relationships between term birthweight (TBW), term low birthweight rate (TLBW) and gestational PM2.5 pollutant using multivariate regression models. Effect modification of air pollution exposures on birth outcomes by maternal and paternal race was evaluated using stratified models. All analyses were conducted with sample weights to provide national-scale estimates. The majority of mothers were White (61%). Fourteen percent of mothers identified as Black, 21% as Hispanic, 3% Asian American and Pacific Islander (AAPI) and 1% American Indian and Alaskan Native (AIAN). Fathers were also racially/ethnically diverse with 55% identified as White Non-Hispanic, 10% as Black Non-Hispanic, 19% as Hispanic, 3% as AAPI and 1% as AIAN. Results from the chi-square and ANOVA tests of significance for racial/ethnic differences indicate disparities in prenatal exposures and birth outcomes by both maternal and paternal race/ethnicity. Prenatal PM2.5 was associated with reduced birthweights during second and third trimester and over the entire gestational period in adjusted regression models, although results did not reach statistical significance. In models stratified by maternal race and paternal race, one unit increase in PM2.5 was statistically significantly associated with lower birthweights among AAPI mothers, -5.6 g (95% CI:-10.3, -1.0 g) and AAPI fathers, -7.6 g (95% CI: -13.1, -2.1 g) during 3rd trimester and among births where father’s race was not reported, -14.2 g (95% CI: -24.0, -4.4 g). These data suggest that paternal characteristics should be used, in addition to maternal characteristics, to describe the risks of adverse birth outcomes. Additionally, our study suggests that serious consideration should be given to investigating environmental and social mechanisms, such as air pollution exposures, as potential contributors to disparities in birth outcomes among AAPI populations.
  • Item
    Reducing Anxiety with Nature and Gardening (RANG): Evaluating the Impacts of Gardening and Outdoor Activities on Anxiety among U.S. Adults during the COVID-19 Pandemic
    (MDPI, 2022-04-22) Gerdes, Megan E.; Aistis, Lucy A.; Sachs, Naomi A.; Williams, Marcus; Roberts, Jennifer D.; Rosenberg Goldstein, Rachel E.
    The COVID-19 pandemic impacted mental health. Growing research has identified the mental health benefits of nature contact, including gardening. We used a cross-sectional survey to investigate the association between gardening and other outdoor activities with anxiety among U.S. adults. The RANG (Reducing Anxiety with Nature and Gardening) survey was distributed online from June–September 2020 through social media (Twitter and Facebook) and a national Master Gardeners listserv. Survey questions captured demographics, COVID-19 experiences, gardening, outdoor activities, and anxiety using the Generalized Anxiety Disorder 7-item scale. Data were analyzed using chi-square, Fisher’s exact, and Kruskal–Wallis tests, as well as logistic regression. Among participants, 46% reported anxiety symptoms. Participants who had gardened ≥ 15 years and those gardening > 8 h over two weeks had lower anxiety scores. Spending more time outdoors on weekdays also decreased anxiety scores. After adjusting for covariates, lower odds of anxiety were identified for 50–69 and 70–89-year-olds vs. 18–29-year-olds; males vs. females; and Texas vs. Maryland residents. These findings confirm increased anxiety during the COVID-19 pandemic and suggest that sustained gardening and other outdoor activities could help reduce anxiety.
  • Item
    El Niño Southern Oscillation, monsoon anomaly, and childhood diarrheal disease morbidity in Nepal
    (Oxford University Press, 2022-03-29) Adams, Nicholas; Dhimal, Meghnath; Mathews, Shifali; Iyer, Veena; Murtugudde, Raghu; Liang, Xin-Zhong; Haider, Muhiuddin; Cruz-Cano, Raul; Thu, Dang Thi Anh; Hashim, Jamal Hisham; Gao, Chuansi; Wang, Yu-Chun; Sapkota, Amir
    Climate change is adversely impacting the burden of diarrheal diseases. Despite significant reduction in global prevalence, diarrheal disease remains a leading cause of morbidity and mortality among young children in low- and middle-income countries. Previous studies have shown that diarrheal disease is associated with meteorological conditions but the role of large-scale climate phenomena such as El Niño-Southern Oscillation (ENSO) and monsoon anomaly is less understood. We obtained 13 years (2002–2014) of diarrheal disease data from Nepal and investigated how the disease rate is associated with phases of ENSO (El Niño, La Niña, vs. ENSO neutral) monsoon rainfall anomaly (below normal, above normal, vs. normal), and changes in timing of monsoon onset, and withdrawal (early, late, vs. normal). Monsoon season was associated with a 21% increase in diarrheal disease rates (Incident Rate Ratios [IRR]: 1.21; 95% CI: 1.16–1.27). El Niño was associated with an 8% reduction in risk while the La Niña was associated with a 32% increase in under-5 diarrheal disease rates. Likewise, higher-than-normal monsoon rainfall was associated with increased rates of diarrheal disease, with considerably higher rates observed in the mountain region (IRR 1.51, 95% CI: 1.19–1.92). Our findings suggest that under-5 diarrheal disease burden in Nepal is significantly influenced by ENSO and changes in seasonal monsoon dynamics. Since both ENSO phases and monsoon can be predicted with considerably longer lead time compared to weather, our findings will pave the way for the development of more effective early warning systems for climate sensitive infectious diseases.
  • Item
    Mixture toxicity, cumulative risk, and environmental justice in United States federal policy, 1980–2016
    (Springer Nature, 2021-09-17) Hunt Sprinkle, Robert; Payne-Sturges, Devon C.
    Toxic chemicals — “toxicants” — have been studied and regulated as single entities, and, carcinogens aside, almost all toxicants, single or mixed and however altered, have been thought harmless in very low doses or very weak concentrations. Yet much work in recent decades has shown that toxicants can injure wildlife, laboratory animals, and humans following exposures previously expected to be harmless. Additional work has shown that toxicants can act not only individually and cumulatively but also collectively and even synergistically and that they affect disadvantaged communities inordinately — and therefore, as argued by reformers, unjustly. As late as December 2016, the last full month before the inauguration of a president promising to rescind major environmental regulations, the United States federal environmental-health establishment, as led by the Environmental Protection Agency (EPA), had not developed coherent strategies to mitigate such risks, to alert the public to their plausibility, or to advise leadership in government and industry about their implications. To understand why, we examined archival materials, reviewed online databases, read internal industry communications, and interviewed experts. We confirmed that external constraints, statutory and judicial, had been in place prior to EPA’s earliest interest in mixture toxicity, but we found no overt effort, certainly no successful effort, to loosen those constraints. We also found internal constraints: concerns that fully committing to the study of complex mixtures involving numerous toxicants would lead to methodological drift within the toxicological community and that trying to act on insights from such study could lead only to regulatory futility. Interaction of these constraints, external and internal, shielded the EPA by circumscribing its responsibilities and by impeding movement toward paradigmatic adjustment, but it also perpetuated scientifically dubious policies, such as those limiting the evaluation of commercial chemical formulations, including pesticide formulations, to only those ingredients said by their manufacturers to be active. In this context, regulators’ disregard of synergism contrasted irreconcilably with biocide manufacturers’ understanding that synergism enhanced lethality and patentability. In the end, an effective national response to mixture toxicity, cumulative risk, and environmental injustice did not emerge. In parallel, though, the National Institute of Environmental Health Sciences, which was less constrained, pursued with scientific investigation what the EPA had not pursued with regulatory action.
  • Item
    Climate change, extreme events, and increased risk of salmonellosis: foodborne diseases active surveillance network (FoodNet), 2004-2014
    (Springer Nature, 2021-09-18) Morgado, Michele E.; Jiang, Chengsheng; Zambrana, Jordan; Upperman, Crystal Romeo; Mitchell, Clifford; Boyle, Michelle; Sapkota, Amy R.; Sapkota, Amir
    Infections with nontyphoidal Salmonella cause an estimated 19,336 hospitalizations each year in the United States. Sources of infection can vary by state and include animal and plant-based foods, as well as environmental reservoirs. Several studies have recognized the importance of increased ambient temperature and precipitation in the spread and persistence of Salmonella in soil and food. However, the impact of extreme weather events on Salmonella infection rates among the most prevalent serovars, has not been fully evaluated across distinct U.S. regions. To address this knowledge gap, we obtained Salmonella case data for S. Enteriditis, S. Typhimurium, S. Newport, and S. Javiana (2004-2014; n = 32,951) from the Foodborne Diseases Active Surveillance Network (FoodNet), and weather data from the National Climatic Data Center (1960-2014). Extreme heat and precipitation events for the study period (2004-2014) were identified using location and calendar day specific 95th percentile thresholds derived using a 30-year baseline (1960-1989). Negative binomial generalized estimating equations were used to evaluate the association between exposure to extreme events and salmonellosis rates. We observed that extreme heat exposure was associated with increased rates of infection with S. Newport in Maryland (Incidence Rate Ratio (IRR): 1.07, 95% Confidence Interval (CI): 1.01, 1.14), and Tennessee (IRR: 1.06, 95% CI: 1.04, 1.09), both FoodNet sites with high densities of animal feeding operations (e.g., broiler chickens and cattle). Extreme precipitation events were also associated with increased rates of S. Javiana infections, by 22% in Connecticut (IRR: 1.22, 95% CI: 1.10, 1.35) and by 5% in Georgia (IRR: 1.05, 95% CI: 1.01, 1.08), respectively. In addition, there was an 11% (IRR: 1.11, 95% CI: 1.04-1.18) increased rate of S. Newport infections in Maryland associated with extreme precipitation events. Overall, our study suggests a stronger association between extreme precipitation events, compared to extreme heat, and salmonellosis across multiple U.S. regions. In addition, the rates of infection with Salmonella serovars that persist in environmental or plant-based reservoirs, such as S. Javiana and S. Newport, appear to be of particular significance regarding increased heat and rainfall events.
  • Item
    Quantitative assessment of airborne exposures generated during common cleaning tasks: a pilot study
    (Springer Nature, 2010-11-30) Bello, Anila; Quinn, Margaret M; Perry, Melissa J; Milton, Donald K
    A growing body of epidemiologic evidence suggests an association between exposure to cleaning products with asthma and other respiratory disorders. Thus far, these studies have conducted only limited quantitative exposure assessments. Exposures from cleaning products are difficult to measure because they are complex mixtures of chemicals with a range of physicochemical properties, thus requiring multiple measurement techniques. We conducted a pilot exposure assessment study to identify methods for assessing short term, task-based airborne exposures and to quantitatively evaluate airborne exposures associated with cleaning tasks simulated under controlled work environment conditions. Sink, mirror, and toilet bowl cleaning tasks were simulated in a large ventilated bathroom and a small unventilated bathroom using a general purpose, a glass, and a bathroom cleaner. All tasks were performed for 10 minutes. Airborne total volatile organic compounds (TVOC) generated during the tasks were measured using a direct reading instrument (DRI) with a photo ionization detector. Volatile organic ingredients of the cleaning mixtures were assessed utilizing an integrated sampling and analytic method, EPA TO-17. Ammonia air concentrations were also measured with an electrochemical sensor embedded in the DRI. Average TVOC concentrations calculated for 10 minute tasks ranged 0.02 - 6.49 ppm and the highest peak concentrations observed ranged 0.14-11 ppm. TVOC time concentration profiles indicated that exposures above background level remained present for about 20 minutes after cessation of the tasks. Among several targeted VOC compounds from cleaning mixtures, only 2-BE was detectable with the EPA method. The ten minute average 2- BE concentrations ranged 0.30 -21 ppm between tasks. The DRI underestimated 2-BE exposures compared to the results from the integrated method. The highest concentration of ammonia of 2.8 ppm occurred during mirror cleaning. Our results indicate that airborne exposures from short-term cleaning tasks can remain in the air even after tasks' cessation, suggesting potential exposures to anyone entering the room shortly after cleaning. Additionally, 2-BE concentrations from cleaning could approach occupational exposure limits and warrant further investigation. Measurement methods applied in this study can be useful for workplace assessment of airborne exposures during cleaning, if the limitations identified here are addressed.
  • Item
    Temporal changes in the prevalence of childhood asthma and allergies in urban and rural areas of Cyprus: results from two cross sectional studies
    (Springer Nature, 2011-11-11) Kolokotroni, Ourania; Middleton, Nicos; Nicolaou, Nicolas; Pipis, Spyros; Priftis, Kostas N; Milton, Donald K; Yiallouros, Panayiotis K
    The prevalence of childhood asthma and allergies in Cyprus was significantly higher in urban compared to rural areas back in the year 2000, against a background of an overall low prevalence (e.g. current wheeze 6.9%) by comparison to northern European countries. In this study we aimed to assess temporal changes in the prevalence of asthma and allergies in Cyprus after an 8-year interval and to examine whether any differential changes have occurred in urban and rural parts of the island. During the academic years 1999-2000 and 2007-2008, the parents of 7-8 year old children residing in the same set of urban and rural areas completed the ISAAC core questionnaire. In addition to providing prevalence estimates of allergic diseases in 2000 and 2008, changes between the two periods were expressed as odds ratios estimated in multiple logistic regression models adjusting for survey participants' characteristics. The prevalence of current wheeze was higher in 2008 (8.7%, 95% confidence interval 7.5%-9.9%, n = 2216) than the previously recorded figure in 2000 (6.9%, 95% CI 6.2%-7.6%, OR = 1.25, 95% CI: 1.02-1.53, n = 4944). Significant increases were also seen in the prevalence of lifetime asthma (11.3% vs. 17.4%, OR = 1.59, CI: 1.36-1.86), eczema (6.8% vs. 13.5%, OR = 1.91, CI: 1.59-2.29) and allergic rhinoconjuctivitis (2.6% vs. 5.2%, OR = 1.82, CI: 1.39-2.41). The prevalence of current wheeze nearly doubled between 2000 and 2008 in rural areas (5.4% vs. 9.7%, OR 1.81, CI: 1.24-2.64) while no significant change was observed in urban areas (7.5% vs. 8.4%, OR 1.08, CI: 0.84-1.37); p value for effect modification = 0.04. Rises in asthma and rhinitis prevalence, but not eczema were also more pronounced in rural compared to urban areas. The prevalence of allergic diseases in Cyprus is still on the rise; recent increases appear more pronounced among children living in rural areas possibly indicating recent environmental and lifestyle changes in these communities.