Physics Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2800

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    All-Sky Search for Very-High-Energy Emission from Primordial Black Holes and Gamma-Ray Bursts with the HAWC Observatory
    (2023) Engel, Kristi Lynne; Goodman, Jordan A; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Transient sources of very-high-energy gamma rays are short-lived astrophysical phenomena often associated with catastrophic events that change their brightness over relatively short timescales. The search for and study of such objects, especially in the TeV energy regime, has the possibility to shed light not only on the physics at play within the enigmatic, chaotic environments that produce such emission, but also to answer several remaining questions in fundamental physics. In this dissertation, we leverage the sensitivity and characteristics of the High-Altitude Water Cherenkov (HAWC) Observatory in pursuit of gaining insight into these areas. The HAWC Observatory, located on the side of the side of the Sierra Negra volcano in Puebla, Mexico at an altitude of 4,100 m above sea level, is an extensive-air-shower array sensitive to gamma rays from ~0.1 to >100 TeV that has been in operation since March of 2015. It has a wide field of view of ~2 sr at any one time and, combined with its large operational duty cycle (>95%), observes 2/3 of the sky every day. HAWC operates using the water-Cherenkov detection technique with 1,200 photomultiplier tubes (PMTs) in two different sizes to detect Cherenkov emission from secondary air-shower particles. Herein, we present an improved characterization for the larger of these two PMT models for inclusion within the Monte Carlo simulation of the HAWC Observatory, as well as the custom testing apparatus designed and constructed for this purpose. With HAWC's wide field of view, near-continuous uptime, and large archival dataset, it serves as an ideal observatory with which to search for transient sources of all kinds. We apply these advantages to perform searches for two types of transient sources--- Primordial Black Holes (PBHs) and Gamma-Ray Bursts (GRBs). The first of these, a search for emission signatures of evaporating PBHs, is performed on 959 days of HAWC data for remaining lifetimes of 0.2, 1, 10, and 100 s, assuming radiation development according to the Standard Emission Model. We show that previous attempts to perform searches for transient searches similar to PBHs with HAWC were oversampling at detrimental levels and improve upon that method to achieve greater statistical rigor. Finding no significant emission for any duration, we place upper limits at the 99% confidence level on the local burst rate density. For the second of these source types, we apply the low-energy improvements recently made to the HAWC data reconstruction procedure to search for very-high-energy emission within the first 0.1, 1, 10, and 100 s of emission for 93 GRBs within HAWC's field of view at their reported T0 over the first 7 years of HAWC operations. This search is performed using permutations of four different assumed redshift values and four different assumed spectral indices. Finding no significant emission for any duration under any set of assumption parameters, we place upper limits at the 95% confidence level on the intrinsic flux for all GRBs. For those GRBs with external flux models available from other gamma-ray detectors, we compare the HAWC limits to those models in order to constrain the possible emission in the TeV regime with respect to that at lower energy values. We also perform a follow-up execution of this analysis with start times shifted to match external model start times which differed from T0. Again finding no significant emission, we place upper limits at the 95% confidence level on the intrinsic flux for all parameter sets and for all external start times for those GRBs HAWC was most likely to have seen. Finally, we speculate about the future of searches for PBHs and GRBs with the next-generation wide-field-of-view instrument, the Southern Wide-field Gamma-ray Observatory (SWGO), presenting projected performance for these two types of transient sources.
  • Item
    Simulations of Accretion Mechanisms and Observational Signatures of Black Hole Accretion Disks
    (2019) Smith, Megan; McKinney, Jonathan C; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Black holes have been a subject of fascination since they were first theorized about over a century ago. There are many questions about them left unanswered. One of these questions is how matter is accreted onto these objects when the plasma around them is rotating in an accretion disk. An answer to this question is likely to be found in the magnetohydrodynamic processes that occur in the plasma, which require highly sophisticated numerical simulations to explore. In this thesis, I describe an analysis of one magnetohydrodynamic instability found in these simulations as well as the observational signatures it produces, which might be recognized in observations of these systems. For the remainder of this thesis, I will discuss the formation and evolution of a formal near-peer mentoring program for women in the University of Maryland physics department. Mentoring programs have been shown to have a number of benefits for both mentors and mentees. Primary among them is an increased sense of belonging and science identity, which is linked to increased retention. Given the so-called "leaky pipeline" problem of women leaving physics, a field where they are already underrepresented, efforts to improve retention are vital and peer mentoring is one way to do this.
  • Item
    Low-Latency Searches for Gravitational Waves and their Electromagnetic Counterparts with Advanced LIGO and Virgo
    (2019) Cho, Min-A; Shawhan, Peter S; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    For the first time in history, advanced detectors are available to observe the stretching and squeezing of space---gravitational waves---from violent astrophysical events. This opens up the prospect of joint detections with instruments of traditional astronomy, creating the new field of multi-messenger astrophysics. Joint detections allow us to form a coherent picture of the unfolding event as told by the various channels of information: mass and energy dynamics from gravitational waves, charged particle environments (along with magnetic field and specific element environments) from electromagnetic radiation, and thermonuclear reactions/relativistic particle outflows from neutrinos. In this work, I motivate low-latency electromagnetic and neutrino follow-up of sources known to emit gravitational radiation in the sensitivity band of ground-based interferometric detectors, Advanced LIGO and Advanced Virgo. To this end, I describe the low-latency infrastructure I developed with colleagues to select and enable successful follow-up of the first few gravitational-wave candidate events in history, including the first binary black hole merger, named GW150914, and binary neutron star coalescence, named GW170817, from the first and second observing runs. As a review, I outline the theory behind gravitational waves and explain how the advanced detectors, low-latency searches, and data quality vetting procedures work. To highlight the newness of the field, I also share results from an offline search for a more speculative source of gravitational waves, intersecting cosmic strings, from the second observing run. Finally, I address how LIGO/Virgo is prepared to adapt to challenges that will arise during the upcoming third observing run, an era that will be marked by near-weekly binary black hole candidate events and near-monthly binary neutron star candidate events. To handle this load, we made several improvements to our low-latency infrastructure, including a new, streamlined candidate event selection process, expansions I helped develop for temporal coincidence searches with electromagnetic/neutrino triggers, and data quality products on source classification and probability of astrophysical origin to provide to our observing partners for potential compact binary coalescences. These measures will further our prospects for multi-messenger astrophysics and increase our science returns.
  • Item
    Investigating the Origin of Gamma-ray Emission in Non-blazar AGN with the Fermi Large Area Telescope
    (2014) McConville, William Francis; Goodman, Jordan; McEnery, Julie; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The Fermi Large Area Telescope (Fermi-LAT) has detected a small sample of gamma-ray loud non-blazar Active Galactic Nuclei (AGN), including the so-called misaligned AGN, whose radio jets are believed to be pointed off-axis with respect to the observer's line of sight, in contrast to the far more populous gamma-ray loud blazars, whose jets are pointed directly toward the line of sight of the observer. The origin of the gamma-ray emission in these misaligned sources has been widely attributed to the so-called "blazar zone" under the pretense of AGN unification, in which the misaligned Fanaroff-Riley type I and II objects are purported to make up the parent population of the BL Lac and FSRQ blazars, respectively. For a number of misaligned sources, the observations prove to be consistent under this scenario, in that the sources demonstrate short timescale gamma-ray variability, thus confining the emission region to a size scale consistent with the inner parsec-scale regions of the jet. Representing an even smaller percentage of non-blazar sources are those that exhibit no evidence of variable gamma-ray emission over timescales of > 3 years. Steady high energy (HE) emission over these timescales, if proven to be statistically significant, relaxes the constraint that would place the gamma-ray emission within a < 1 parsec region consistent with the size scale of the blazar zone. Three sources in particular that have demonstrated no evidence of variability in the LAT range are 4C+55.17, Fornax A, and M87. Each of these objects further demonstrates a unique set of multiwavelength properties that could potentially give rise to gamma-ray emission that is produced outside of the blazar zone. In this thesis, I conduct a detailed investigation into the origin of gamma-rays from each of these objects, and I discuss the multiwavelength properties that could give rise to a steady gamma-ray component consistent with non-blazar emission. Further improvements in LAT analysis techniques are also briefly discussed.
  • Item
    Proton and Helium Spectra from the First Flight of the CREAM Balloon-Borne Experiment
    (2010) Yoon, Young Soo; Seo, EunSuk; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Cosmic-ray proton and helium spectra have been measured with the balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment flown for 42 days in Antarctica in the 2004-2005 austral summer season. High-energy cosmic-ray data were collected at an average altitude of ∼38.5 km with an average atmospheric overburden of ∼3.9 g/cm2. Individual elements are clearly separated with a charge resolution of ∼0.15e (in charge units) and ∼0.2e, respectively, for protons and helium nuclei. The measured spectra at the top of the atmosphere are represented by a power law with a spectral index of -2.66 ± 0.02 for protons from 2.5 TeV to 250 TeV and -2.58 ± 0.02 for helium nuclei from 630 GeV/nucleon to 63 TeV/nucleon. The measured proton and helium spectra are harder than previous measurements at a few tens of GeV/nucleon. Possible explanations of this spectral hardening could be the effect of a relatively nearby source or the effect of spectral concavity caused by interactions of cosmic rays with the accelerating shock. The helium flux is higher than that expected from extrapolation of a power-law fit to the lower-energy data. The relative abundance of protons to helium nuclei is about 8.8 ± 0.5 in the range from 2.5 TeV/nucleon to 63 TeV/nucleon. In this thesis, the analysis of proton and helium spectra will be discussed.
  • Item
    Improving analytical templates and searching for gravitational waves from coalescing black hole binaries
    (2010) Ochsner, Evan Lee; Buonanno, Alessandra; Physics; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    The Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo are taking data at design sensitivity. They will be upgraded to Advanced LIGO and Virgo within the next 5 years and the detection of gravitational waves will be very likely. Binaries of two compact objects which inspiral and coalesce are one of the most promising sources for LIGO and Virgo. Most searches have focused solely on the inspiral portion of the waveform, and are consequently limited to low total mass. Recent breakthroughs in numerical relativity allow one to construct complete inspiral-merger-ringdown waveforms and search for the whole signal. This thesis will review some of the basic characteristics of gravitational waves from compact binaries and methods of searching for them. Analytical template waveforms for such systems will be presented including a comparison of different families of analytical waveforms, a study on the inclusion of spin effects in such waveforms, and a study of inspiral-merger-ringdown waveforms with amplitude corrections and the importance of these effects for parameter estimation. The thesis will culminate with a presentation of the first gravitational wave search to use inspiral-merger-ringdown templates, which was performed on data from the fifth science run of LIGO.