Mechanical Engineering Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1661

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Crystal Strengths at Micro- and Nano-Scale Dimensions
    (MDPI, 2020-02-05) Armstrong, Ronald W.; Elban, Wayne L.
    Higher strength levels, achieved for dimensionally-smaller micro- and nano-scale materials or material components, such as MEMS devices, are an important enabler of a broad range of present-day engineering devices and structures. Beyond such applications, there is an important effort to understand the dislocation mechanics basis for obtaining such improved strength properties. Four particular examples related to these issues are described in the present report: (1) a compilation of nano-indentation hardness measurements made on silicon crystals spanning nano- to micro-scale testing; (2) stress–strain measurements made on iron and steel materials at micro- to nano-crystal (grain size) dimensions; (3) assessment of small dislocation pile-ups relating to Griffith-type fracture stress vs. crack-size calculations for cleavage fracturing of α-iron; and (4) description of thermally-dependent strain rate sensitivities for grain size strengthening and weakening for macro- to micro- to nano-polycrystalline copper and nickel materials.
  • Thumbnail Image
    Item
    The Dislocation Mechanics of Crystal/Polycrystal Plasticity
    (MDPI, 2022-08-25) Armstrong, Ronald W.
    A brief history and update are given in four examples demonstrating that polycrystals are generally stronger than their individual component crystal grains because of obstructed dislocation pile-ups at grain boundaries. The example cases constitute diverse applications of a Hall–Petch dependence involving one or another aspects of the full polycrystal stress–strain behavior: (1) a Hall–Petch based description for a compilation of delayed yielding measurements compiled for steel; (2) computations for an H-P grain size dependent, tensile, plastic instability behavior of copper; (3) an H-P relationship for the true maximum stress for the limit of uniform straining of aluminum; and (4) the onset of a ductile-to-brittle transition in steel cleavage fracturing measurements that are connected to the material fracture toughness properties.