Mechanical Engineering Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1661
Browse
3 results
Search Results
Item Fabrication of a Miniature Paper-Based Electroosmotic Actuator(MDPI, 2016-11-08) Sritharan, Deepa; Smela, ElisabethA voltage-controlled hydraulic actuator is presented that employs electroosmotic fluid flow (EOF) in paper microchannels within an elastomeric structure. The microfluidic device was fabricated using a new benchtop lamination process. Flexible embedded electrodes were formed from a conductive carbon-silicone composite. The pores in the layer of paper placed between the electrodes served as the microchannels for EOF, and the pumping fluid was propylene carbonate. A sealed fluid-filled chamber was formed by film-casting silicone to lay an actuating membrane over the pumping liquid. Hydraulic force generated by EOF caused the membrane to bulge by hundreds of micrometers within fractions of a second. Potential applications of these actuators include soft robots and biomedical devices.Item Numerical and Experimental Study of a Novel Additively Manufactured Metal-Polymer Composite Heat-Exchanger for Liquid Cooling Electronics(MDPI, 2022-01-14) Kalikhura, Gargi; Mandel, Raphael Kahat; Shooshtari, Amir; Ohadi, MichaelIn order to meet increasing power-dissipation requirements of the electronics industry, compact, low-cost, and lightweight heat exchangers (HXs) are desired. With proper design, materials, and manufacture, polymer composite heat exchangers could meet these requirements. This paper presents a novel crossflow air-to-water, low-cost, and lightweight metal-polymer composite HX. This HX, which is entirely additively manufactured, utilizes a novel cross-media approach that provides direct heat exchange between air and liquid sides by using connecting fins. A robust numerical model was developed, which includes the dimensional effects of additive manufacturing. The study consists of a simplified 3D CFD model based on ellipsoidal-shaped staggered tube banks for the laminar range. It then uses an analytical approach to compute entire HX performance. The model is validated experimentally within 8% for thermal performance, 12% for air-side impedance, and 18% for water-side impedance. Finally, HX is compared with a conventional CPU radiator and performs within 10% of the conventional unit for reasonable flow rates and pressure-drop ranges. Moreover, HX also provides added design and cost advantages over the conventional unit, which makes the HX a potential candidate for electronic cooling applications.Item A 1D Reduced-Order Model (ROM) for a Novel Latent Thermal Energy Storage System(MDPI, 2022-07-14) Kailkhura, Gargi; Mandel, Raphael Kahat; Shooshtari, Amir; Ohadi, MichaelPhase change material (PCM)-based thermal energy storage (TES) systems are widely used for repeated intermittent heating and cooling applications. However, such systems typically face some challenges due to the low thermal conductivity and expensive encapsulation process of PCMs. The present study overcomes these challenges by proposing a lightweight, low-cost, and low thermal resistance TES system that realizes a fluid-to-PCM additively manufactured metal-polymer composite heat exchanger (HX), based on our previously developed cross-media approach. A robust and simplified, analytical-based, 1D reduced-order model (ROM) was developed to compute the TES system performance, saving computational time compared to modeling the entire TES system using PCM-related transient CFD modeling. The TES model was reduced to a segment-level model comprising a single PCM-wire cylindrical domain based on the tube-bank geometry formed by the metal fin-wires. A detailed study on the geometric behavior of the cylindrical domain and the effect of overlapped areas, where the overlapped areas represent a deviation from 1D assumption on the TES performance, was conducted. An optimum geometric range of wire-spacings and size was identified. The 1D ROM assumes 1D radial conduction inside the PCM and analytically computes latent energy stored in the single PCM-wire cylindrical domain using thermal resistance and energy conservation principles. The latent energy is then time-integrated for the entire TES, making the 1D ROM computationally efficient. The 1D ROM neglects sensible thermal capacity and is thus applicable for the low Stefan number applications in the present study. The performance parameters of the 1D ROM were then validated with a 2D axisymmetric model, typically used in the literature, using commercially available CFD tools. For validation, a parametric study of a wide range of non-dimensionalized parameters, depending on applications ranging from pulsed-power cooling to peak-load shifting for building cooling application, is included in this paper. The 1D ROM appears to correlate well with the 2D axisymmetric model to within 10%, except at some extreme ranges of a few of the non-dimensional parameters, which lead to the condition of axial conduction inside the PCM, deviating from the 1D ROM.