Mechanical Engineering Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1661

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Unobtrusive Estimation of Cardiovascular Parameters with Limb Ballistocardiography
    (MDPI, 2019-07-01) Yao, Yang; Shin, Sungtae; Mousavi, Azin; Kim, Chang-Sei; Xu, Lisheng; Mukkamala, Ramakrishna; Hahn, Jin-Oh
    This study investigates the potential of the limb ballistocardiogram (BCG) for unobtrusive estimation of cardiovascular (CV) parameters. In conjunction with the reference CV parameters (including diastolic, pulse, and systolic pressures, stroke volume, cardiac output, and total peripheral resistance), an upper-limb BCG based on an accelerometer embedded in a wearable armband and a lower-limb BCG based on a strain gauge embedded in a weighing scale were instrumented simultaneously with a finger photoplethysmogram (PPG). To standardize the analysis, the more convenient yet unconventional armband BCG was transformed into the more conventional weighing scale BCG (called the synthetic weighing scale BCG) using a signal processing procedure. The characteristic features were extracted from these BCG and PPG waveforms in the form of wave-to-wave time intervals, wave amplitudes, and wave-to-wave amplitudes. Then, the relationship between the characteristic features associated with (i) the weighing scale BCG-PPG pair and (ii) the synthetic weighing scale BCG-PPG pair versus the CV parameters, was analyzed using the multivariate linear regression analysis. The results indicated that each of the CV parameters of interest may be accurately estimated by a combination of as few as two characteristic features in the upper-limb or lower-limb BCG, and also that the characteristic features recruited for the CV parameters were to a large extent relevant according to the physiological mechanism underlying the BCG.
  • Thumbnail Image
    Item
    Hand Gesture Recognition Using EGaIn-Silicone Soft Sensors
    (MDPI, 2021-05-05) Shin, Sungtae; Yoon, Han UI; Yoo, Byungseok
    Exploiting hand gestures for non-verbal communication has extraordinary potential in HCI. A data glove is an apparatus widely used to recognize hand gestures. To improve the functionality of the data glove, a highly stretchable and reliable signal-to-noise ratio sensor is indispensable. To do this, the study focused on the development of soft silicone microchannel sensors using a Eutectic Gallium-Indium (EGaIn) liquid metal alloy and a hand gesture recognition system via the proposed data glove using the soft sensor. The EGaIn-silicone sensor was uniquely designed to include two sensing channels to monitor the finger joint movements and to facilitate the EGaIn alloy injection into the meander-type microchannels. We recruited 15 participants to collect hand gesture dataset investigating 12 static hand gestures. The dataset was exploited to estimate the performance of the proposed data glove in hand gesture recognition. Additionally, six traditional classification algorithms were studied. From the results, a random forest shows the highest classification accuracy of 97.3% and a linear discriminant analysis shows the lowest accuracy of 87.4%. The non-linearity of the proposed sensor deteriorated the accuracy of LDA, however, the other classifiers adequately overcame it and performed high accuracies (>90%).