Mechanical Engineering Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1661

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Lessons Learned from the 787 Dreamliner Issue on Lithium-Ion Battery Reliability
    (MDPI, 2013-09-09) Williard, Nicholas; He, Wei; Hendricks, Christopher; Pecht, Michael
    On 16 January 2013, all Boeing 787 Dreamliners were indefinitely grounded due to lithium-ion battery failures that had occurred in two planes. Subsequent investigations into the battery failures released through the National Transportation Safety Board (NTSB) factual report, the March 15th Boeing press conference in Japan, and the NTSB hearings in Washington D.C., never identified the root causes of the failures—a major concern for ensuring safety and meeting reliability expectations. This paper discusses the challenges to lithium-ion battery qualification, reliability assessment, and safety in light of the Boeing 787 battery failures. New assessment methods and control techniques that can improve battery reliability and safety in avionic systems are then presented.
  • Thumbnail Image
    Item
    A Unique Failure Mechanism in the Nexus 6P Lithium-Ion Battery
    (MDPI, 2018-04-04) Saxena, Saurabh; Xing, Yinjiao; Pecht, Michael
    Nexus 6P smartphones have been beset by battery drain issues, which have been causing premature shutdown of the phone even when the charge indicator displays a significant remaining runtime. To investigate the premature battery drain issue, two Nexus 6P smartphones (one new and one used) were disassembled and their batteries were evaluated using computerized tomography (CT) scan analysis, electrical performance (capacity, resistance, and impedance) tests, and cycle life capacity fade tests. The “used” smartphone battery delivered only 20% of the rated capacity when tested in a first capacity cycle and then 15% of the rated capacity in a second cycle. The new smartphone battery exceeded the rated capacity when first taken out of the box, but exhibited an accelerated capacity fade under C/2 rate cycling and decreased to 10% of its initial capacity in just 50 cycles. The CT scan results revealed the presence of contaminant materials inside the used battery, raising questions about the quality of the manufacturing process.