Mechanical Engineering Research Works
Permanent URI for this collectionhttp://hdl.handle.net/1903/1661
Browse
2 results
Search Results
Item Crystal Indentation Hardness(MDPI, 2017-01-12) Armstrong, Ronald W.; Walley, Stephen M.; Elban, Wayne L.There is expanded interest in the long-standing subject of the hardness properties of materials. A major part of such interest is due to the advent of nanoindentation hardness testing systems which have made available orders of magnitude increases in load and displacement measuring capabilities achieved in a continuously recorded test procedure. The new results have been smoothly merged with other advances in conventional hardness testing and with parallel developments in improved model descriptions of both elastic contact mechanics and dislocation mechanisms operative in the understanding of crystal plasticity and fracturing behaviors. No crystal is either too soft or too hard to prevent the determination of its elastic, plastic and cracking properties under a suitable probing indenter. A sampling of the wealth of measurements and reported analyses associated with the topic on a wide variety of materials are presented in the current Special Issue.Item Crystal Strengths at Micro- and Nano-Scale Dimensions(MDPI, 2020-02-05) Armstrong, Ronald W.; Elban, Wayne L.Higher strength levels, achieved for dimensionally-smaller micro- and nano-scale materials or material components, such as MEMS devices, are an important enabler of a broad range of present-day engineering devices and structures. Beyond such applications, there is an important effort to understand the dislocation mechanics basis for obtaining such improved strength properties. Four particular examples related to these issues are described in the present report: (1) a compilation of nano-indentation hardness measurements made on silicon crystals spanning nano- to micro-scale testing; (2) stress–strain measurements made on iron and steel materials at micro- to nano-crystal (grain size) dimensions; (3) assessment of small dislocation pile-ups relating to Griffith-type fracture stress vs. crack-size calculations for cleavage fracturing of α-iron; and (4) description of thermally-dependent strain rate sensitivities for grain size strengthening and weakening for macro- to micro- to nano-polycrystalline copper and nickel materials.