Animal & Avian Sciences Theses and Dissertations

Permanent URI for this collectionhttp://hdl.handle.net/1903/2741

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    THE EFFECTS OF POLYCHLORINATED BIPHEYNLS (PCBs) ON AVIAN CARDIAC DEVELOPMENT
    (2012) Carro, Tiffany; Ottinger, Mary Ann; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Polychlorinated biphenyls (PCBs) are a class of synthetic organochlorines that are thermally stable, resistant to degradation, and persistent in the environment as a result of bioaccumulation and intermittent redistribution through trophic levels. These compounds were sold commercially as mixtures in the twentieth century and later banned due to their biological toxicity. There are 209 known PCB congeners, each with different toxicities and physical properties that cause a variety of adverse health effects. Moreover, the effects of PCB mixtures vary with exposure concentrations, PCB congener toxicity, and species sensitivity. However, limited information is available about the impact of PCBs on the development of the embryonic cardiovascular system. There is a major site of contamination along the upper Hudson River in New York; wildlife in that region have shown evidence of exposure to PCBs. The purpose of this research was to determine the impact of embryonic exposure to a PCB mixture and a single congener, both found in the upper Hudson River on the developing avian cardiovascular system. In study 1, tree swallow eggs (Tachycineta bicolor) were dosed with PCB 77 and incubated to hatch. Similarly, domestic chicken eggs (Gallus domesticus) were dosed with the PCB mixture at embryonic day zero and incubated to hatch in study 2. Eggs were monitored through incubation; other measures were taken at hatch along with tissue collection. Results showed that embryonic exposure to PCBs resulted in an absence of the ventricular wall compact layer and hypertrabeculation in tree swallow hatchlings in spite of no effect on survival. Embryonic exposure to a PCB mixture in domestic chickens resulted in compact layer absence as well as additional cardiomyopathies, including absence of the ventricular wall trabeculated layer, ventricular chamber dilation, abnormal heart wall and septal formations, and arrhythmias during embryonic development. In study 3, embryonic exposure to a PCB mixture was studied at Hamburger Hamilton stages 10, 16, and 20. Embryonic exposure to a PCB mixture resulted in abnormal proliferation of cardiomyocytes early in heart development. Dose-dependent mortality occurred in chicken embryos exposed to the PCB mixture. These results support other findings demonstrating PCB effects on the cardiovascular system. Further, these data showed dramatic adverse effects of the PCB mixture as well as a single congener found in the region of the upper Hudson River on the developing avian cardiac system.
  • Thumbnail Image
    Item
    IDENTIFICATION OF A NON-CLASSICAL GLUCOCORTICOID-RESPONSIVE ELEMENT IN THE 5'-FLANKING REGION OF THE CHICKEN GROWTH HORMONE GENE
    (2010) Knubel, Kristina Heuck; Porter, Tom E; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)
    Growth hormone (GH) effects growth and contributes to a lean phenotype in broiler chickens. GH secretion by the anterior pituitary begins on embryonic day (e) 14, concomitantly with a rise in adrenal glucocorticoids (GC) or corticosterone (CORT) secretion. CORT treatment of chicken embryonic pituitary (CEP) cells induces GH secretion prematurely. GC induction of the GH gene requires on-going protein synthesis or an intermediary protein, but the gene lacks a classical GC-response element. We hypothesized that a GC-responsive intermediary protein is necessary for the CORT induced increase in GH. Characterization of the upstream region of the gene may help identify such a protein. To this end, a fragment of the GH gene (-1727/+48) was cloned into a luciferase reporter and characterized in e11 CEP cells. CORT treatment increased luciferase activity and mRNA. Inclusion of CHX blocked CORT induction of luciferase mRNA. Through deletion analysis, we found that a GC-responsive region (GCRR) is located at -1045 to -954. By defining the GC-responsive region and cis-acting elements located within, trans-acting proteins involved in GC induction of the GH gene may be identified. The GCRR is CORT-responsive in either orientation, but it is context-dependent. Potential transcription factor motifs in the GCRR include ETS-1 and a degenerate GRE (GREF). Nuclear proteins bound to a GCRR probe in a CORT-regulated manner and unlabeled competitor DNA competed off binding. Mutation of the central portion of the DNA probe resulted in a significant decrease in protein binding. Mutation of the ETS-1 site or GREF site in the -1045/+48 GH construct resulted in ablation of luciferase activity. ETS-1 and GR are associated with the endogenous gene under basal and 1.5 h CORT-treated conditions, while GR recruitment increased after CORT treatment. GC regulation of the GH gene during chicken embryonic development requires cis-acting elements located 1 kb upstream from the transcription start site and includes recruitment of ETS-1 and GR. This is the first study to demonstrate involvement of ETS-1 in GC regulation of the GH gene during embryonic development. Characterization of GC regulation of the GH gene during embryonic development enhances our understanding of growth regulation in vertebrates.