Animal & Avian Sciences Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/2741
Browse
13 results
Search Results
Item MEDIATION OF CORTICOSTERONE-INDUCED GROWTH HORMONE GENE EXPRESSION IN CHICKEN EMBRYONIC PITUITARY CELLS: IDENTIFICATION OF TRANS-ACTING FACTORS AND A NOVEL PITUITARY CELL TYPE(2024) Liu, Kuan Ling; Porter, Tom E.; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Growth hormone (GH) is responsible for up to 30% of growth in broiler chickens. Somatotrophs, or GH secreting cells, begin to differentiate around embryonic day (e)14, in conjunction with an increase in the primary plasma glucocorticoid (GC) corticosterone (CORT). CORT treatment of e11 chicken embryonic pituitary (CEP) cells induces premature GH secretion. This GC-induced process involves trans-acting factors because the GH gene lacks a canonical GC response element (GRE). In addition to the binding of ETS1 and the GC receptor (GR) to the GC-responsive region (GCRR; 1045/ 964), we hypothesize that there are other regulatory factors necessary for CORT responsiveness. By modifying the pGL3_-1742/+25 GH-luciferase reporter, we have constructed various other GH-luciferase reporters and analyzed them for promoter activity in response to CORT treatment. We identified a putative distal (d) ETS-Like 1 (ELK1) binding site that is necessary. The proximal (p)PIT1 site and pTATA box were also identified to be critical for CORT induction of the GH gene. Interestingly, cloning multiple copies of the extended GCRR (eGCRR; -1067/-900) further increased promoter activity in an additive manner under both basal and CORT treated conditions. Through single-cell RNA sequencing (scRNAseq), 8 members of the ETS family of transcription factors were identified in > 5% of the somatotroph population. Commercial antibodies were validated, and human (h)ETV1, hELF2, hELK3, and hETV6 antibodies were confirmed to recognize their recombinant chicken ortholog and to identify their corresponding protein in e11 CEP cells. Results from chromatin immunoprecipitation quantitative PCR suggest that multiple ETS members are involved in CORT induction of the GH gene with more evidence pointing towards ELF2 and ELK3. Identifying trans-acting factors for the GH gene inducible by CORT allows for better understanding of endogenous GH regulation in chickens. Further analysis of the scRNAseq data from e11 CEP cells revealed a cluster of cells expressing genes for more than one hormone-producing cell type (“premature nebulous” cluster). Within the premature nebulous cluster, a large population (~30%) was co-expressing proopiomelanocortin (POMC) and growth hormone (GH). We named this novel cell population the cortico-somatotrophs. Through RNA fluorescent in-situ hybridization (RNA-FISH) and dual label immunofluorescence, we verified the existence of the cortico-somatotrophs at both the mRNA and protein level, respectively. Cortico-somatotrophs were also shown to share genes for receptors normally specific to both corticotrophs (CRH-R1) and somatotrophs (GHRHR). Additionally, in response to CORT treatment, the cortico somatotrophs showed an increase in GH as well as a decrease in POMC mRNA levels. The discovery of the cortico-somatotrophs suggests a modification to the current dogma on pituitary cell lineages, where corticotrophs and somatotrophs may have overlapping developmental pathways. In conclusion, our discovery of the cortico somatotrophs has furthered our understanding of CEP development and opened the door for further exploration of the cell lineages during pituitary development.Item COORDINATED TRAFFICKING OF HEME TRANSPORTERS BY CARGO SORTING COMPLEXES IS ESSENTIAL FOR ORGANISMAL HEME HOMEOSTASIS(2025) Dutt, Sohini; Hamza, Iqbal IH; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Heme, an iron-containing organic ring, is a vital cofactor responsible for diverse biologicalfunctions and is the major source of bioavailable iron in the human diet. As a hydrophobic and cytotoxic cofactor, heme must be transported in a highly controlled manner through membranes via specific intra- and inter-cellular pathways. However, the genes and pathways responsible for heme trafficking remain poorly understood. Unlike other metazoans, Caenorhabditis elegans cannot synthesize heme but requires heme for sustenance. Thus, C. elegans is an ideal animal model to identify heme trafficking pathways as it permits organismal heme homeostasis to be directly manipulated by controlling environmental heme. Heme is imported apically into the intestine by HRG-1-related permeases and exported basolaterally by MRP-5/ABCC5 to extra- intestinal tissues. Loss of mrp-5 causes embryonic lethality that can be suppressed by dietary heme supplementation raising the possibility that MRP-5-independent heme export pathways must exist. Here we show, by performing a forward genetic screen in mrp-5 null mutants, that loss of the vesicular cargo sorting Adaptor Protein complexes (AP-3) fully rescues mrp-5 lethality and restores heme homeostasis. Remarkably, intestinal heme accumulation due to mrp-5-deficiency causes a concomitant deficit in the lysosomal heme importer HRG-1 abundance and localization. Loss of both MRP-5 and AP-3 subunits resurrects HRG-1 levels and localization, thus underscoring the crucial role of HRG-1 in dictating mrp-5 mutant phenotypes. In the absence of MRP-5, heme is exported by SLC49A3 homolog, a previously uncharacterized transporter. Live- cell imaging reveals vesicular coalescence that facilitates heme transfer between the importers and exporters at the interface of lysosomal-related organelle. These results define a mechanistic model for metazoan heme trafficking and identifies SLC49A3 as a promising candidate for heme export in mammals.Item ANTAGONISTIC MECHANISM OF METABOLITES FROM LACTOBACILLUS CASEI AGAINST FOODBORNE ENTEROHEMORRHAGIC ESCHERICHIA COLI(2022) Aditya, Arpita; Biswas, Debabrata; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Enterohemorrhagic Escherichia coli O157: H7 (EHEC), a foodborne enteropathogen, remains a significant public health concern since its discovery in 1982. With an incredibly low infectious dose (10-100 bacteria), this pathogen can cause self-limiting diarrhea, vomiting, and abdominal cramps. However, more complicated disease conditions such as bloody diarrhea or hemolytic colitis have been known to develop depending on the serotype involved in the infection, and on immune status and/or age of the patients. Due to its Shiga toxin (Stx) production ability, EHEC infection may lead to a kidney-related problem known as hemolytic uremic syndrome (HUS), which requires advanced medical care. Unlike other bacterial illnesses, therapeutic administration of antibiotics to treat EHEC infections is not recommended due to their controversial association with Stx production. As a result, only preventative/prophylactic and immune-supportive strategies are followed for EHEC infections. Using the antibacterial properties of probiotic bacteria and the metabolites they produce are promising alternative strategies for preventing EHEC infections. We have targeted the probiotic bacteria Lactobacillus casei to determine the mechanism of this alternative strategy. In our study, we have executed microbiological, molecular, chromatographic, and metagenomic approaches to determine the antagonistic mechanisms of action of their metabolites, specifically conjugated linoleic acid (CLA) produced by Lactobacillus casei, against the growth and metabolism of EHEC. The metabolites of wild-type L. casei (LCwt) were augmented by supplementing it with a prebiotic-like dietary component, namely peanut flour (PF) (LCwt+PF), while another LCwt was also genetically engineered (LCCLA) to over convert CLA from linoleic acid (LA). These modifications showed effective results in controlling EHEC both in vitro and in ex vivo conditions. Total metabolites present in cell-free culture supernatant (CFCS) of LCwt, LCwt+PF, and LCCLA were able to control the growth of EHEC without negatively hampering the relative abundance of Firmicutes and Bacteroidetes present in rumen fluid (RF). Among these CFCSs, CFCSCLA exerted the most desirable outcome by eliminating EHEC. In vitro studies demonstrated that, a lower concentration of purified CLA worked synergistically with other metabolites of LCwt and augmented their inhibitory activity against EHEC. The orchestrated effect of metabolites has been observed to downregulate the virulence genes, disrupt the cell membrane, interfere with cell division, and damage their genomic DNA. The probable effect of these metabolites, specifically CLA, on Stx production and neutralization was also investigated by assessing host cell cytotoxicity. Total metabolites of Lactobacillus spp. as well as CLA itself, showed improvement in cell survivability when exposed to Stx. Our findings established a ground to explore the effect of specific metabolites obtained from probiotic bacteria in control and prevention of EHEC. The findings also showed a promising association of purified CLA in neutralizing Stx which can be further explored to use it in therapeutic purposes.Item Identification of the molecular networks governing ovulation frequency in low and high egg producing turkey hens(2019) Brady, Kristen Marie; Porter, Tom E; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Selection for carcass traits has negatively impacted and varied the reproductive efficiency of the commercial turkey hen, creating overall lowered egg production as well as distinct groups of low egg producing hens (LEPH) and high egg producing hens (HEPH). Ovulation frequency correlates with egg production and differs between LEPH and HEPH. Ovulation is governed primarily by the hypothalamo-pituitary-gonadal (HPG) axis through a preovulatory surge (PS) of luteinizing hormone (LH) and progesterone (P4) but ovulation can be influenced by the hypothalamo-pituitary-thyroid (HPT) axis. Dysregulation of the thyroid and reproductive axes, disrupting the PS, leads to lowered egg production, leaving the poultry industry to compensate with larger breeding flocks. LEPH exhibited hypothalamic and pituitary expression consistent with decreased ovulation stimulation and increased ovulation inhibition as well as decreased steroid synthesis in follicle cells. Neuroendocrine and ovarian tissues from HEPH showed a higher sensitivity and response to in vitro HPG axis stimulation. Moreover, cells from HEPH responded positively to HPG axis inhibition while cells from LEPH responded negatively, indicating functional differences in HPG axis regulation. RNA sequencing results reinforced the higher expression of HPG axis genes in HEPH and showed higher expression of HPT axis genes in LEPH. Estradiol (E2) was identified as an upstream regulator activated in HEPH. Hens with average egg production (AEPH) also showed upregulation of E2 receptors during the PS, suggesting involvement in positive feedback loops. Supporting the role of E2 in neuroendocrine feedback, higher plasma concentrations of E2 were seen during the PS in HEPH. Looking into the HPT axis, LEPH displayed lower plasma concentrations of triiodothyronine (T3) and higher levels of thyroxine (T4) outside of the PS while HEPH displayed lower levels of T3 and higher levels of T4 inside of the PS. The T3 and T4 levels surrounding the PS in HEPH were consistent with levels seen in AEPH. At a molecular, cellular, and endocrine level, the reproductive physiology of LEPH and HEPH differs, ultimately leading to egg production differences. Studies tying the noted differences to egg production rates will allow for identification of genetic markers to increase the reproductive efficiency of commercial breeding hens.Item FUNCTIONAL CHARACTERIZATION OF HEME TRANSPORTERS IN ZEBRAFISH(2017) Zhang, Jianbing; Hamza, Iqbal; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Hrg1 and Mrp5 are identified as eukaryotic heme importer and exporter, respectively. Two Hrg1 paralogs have been annotated in zebrafish genome, Hrg1a (Slc48a1b) and Hrg1b (Slc48a1a) with 84% homology in protein sequences. Hrg1a and hrg1b are widely expressed in embryonic and adult zebrafish. Yeast growth assays reveal that zebrafish Hrg1a and Hrg1b are both capable of heme import. However, hrg1a and hrg1b double knockout (hrg1 DKO) zebrafish generated by CRISPR/Cas9 has no overt defects in differentiation and maturation of erythroid cells. Knockdown of hrg1a in hrg1b mutants or vice versa does not impair erythroid lineage in zebrafish embryos. These genetic results suggest that Hrg1 is not required for maturation and hemoglobinization of primitive erythroid cells. Hrg1a and hrg1b mRNA are upregulated in adult kidneys and spleens upon PHZ-induced hemolysis, together with hmox1, a downstream heme degrading enzyme, suggesting that Hrg1 is involved in adult heme-iron recycling during erythrophagcytosis in kidney and spleen of adult zebrafish. DAB-enhanced Perl’s iron staining reveals that iron is accumulated in macrophages in the kidney and spleen in adult wild-type zebrafish. However, macrophages with positive Perl’s staining are rarely found in the kidney of hrg1 DKO and instead large amount of iron is deposited in renal tubules, suggesting defects in heme-iron recycling by kidney macrophages in hrg1 DKO under PHZ-induced hemolysis. Whole transcriptome sequencing of mRNA extracted from spleens and kidneys reveals massive differentially expressed genes in hrg1 DKO involved in immune response, lipid transport, oxidation-reduction process and proteolysis. These indicate that hrg1 DKO are deficient in recycling heme-iron derived from damaged RBCs in the absence of functional Hrg1. Phylogenetic analysis reveals that Mrp5 and Mrp9 are closed homologs in the zebrafish genome. Yeast growth assays reveal that both zebrafish Mrp5 and Mrp9 are capable of heme export. Morpholino knockdown of mrp5 and mrp9 in zebrafish showed severe anemia in developing embryos indicating their involvements in erythropoietic development. Subsequent generation and characterization of mrp5 and mrp9 mutants by CRISPR/Cas9 will further define the function of Mrp5 and Mrp9 during zebrafish development.Item THE REGULATION OF THE INTESTINAL COPPER EXPORTER IS COORDINATED WITH SYSTEMIC COPPER HOMEOSTASIS(2017) Chun, Haarin; Kim, Byung-Eun; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Copper (Cu) plays key catalytic and regulatory roles in biochemical reactions essential for normal growth, development, and health. Defects in Cu metabolism cause Menkes and Wilson’s disease, myeloneuropathy, and cardiovascular disease and are associated with other pathophysiological states. Consequently, it is critical to understand the mechanisms by which organisms control the acquisition, distribution, and utilization of Cu. While it is well established that the enterocyte is a key regulatory point for Cu absorption into the body, how the intestine responds to systemic Cu requirements is poorly understood. Here, we demonstrate that fine-tuned Cu homeostasis is required for normal growth and development in C. elegans. Moreover, we show that CUA-1, the ATP7A/B homolog in worms, localizes to lysosome-like organelles (gut granules) in the intestine under Cu-overload conditions for Cu detoxification, while Cu-deficiency results in a redistribution of CUA-1 to basolateral membranes for Cu efflux to peripheral tissues. Defects in gut granule biogenesis exhibit result in abnormal Cu sequestration and increased susceptibility to toxic Cu levels. Our studies establish that CUA-1 is a key intestinal Cu exporter, and that its trafficking is regulated in response to systemic Cu status in worms. In addition, while the Cu transporter ATP7A plays a major role in both intestinal Cu mobilization to the periphery and prevention of Cu over-accumulation, it is unclear how regulation of ATP7A contributes to Cu homeostasis in response to systemic Cu fluctuation in mammals. Here we show, using Cu-deficient mouse models, that steady-state levels of ATP7A are lower in peripheral tissues (including the heart, spleen, and liver) under Cu deficiency and that subcutaneous administration of Cu to these animals restore normal ATP7A levels in these tissues. Importantly, ATP7A in the intestine is regulated in the opposite manner - low systemic Cu increases ATP7A while subcutaneous Cu administration decreases ATP7A suggesting that intestine-specific non-autonomous regulation of ATP7A abundance may serve as a key homeostatic control for Cu export into the circulation. Altogether, our results implicate CUA-1/ATP7A Cu exporter in the intestine as a key modulator for organismal Cu homeostasis in metazoans.Item ROLE OF ANNEXIN A6 IN SENSORY NEURONS DURING EARLY CHICK CRANIAL GANGLIA DEVELOPMENT(2017) Shah, Ankita; Taneyhill, Lisa A; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The cranial sensory ganglia are created from neural crest cells and placode cell-derived neurons. Defects in the migration and interaction of these cells can cause abnormalities in craniofacial development and the sensory nervous system. To this end, we are using the embryonic chick cranial ganglia to elucidate the signaling mechanisms underlying cellular interactions. The Annexin protein superfamily has an evolutionarily conserved role in the development of the sensory ganglia. Our lab previously identified a function for chick Annexin A6 in modulating early NCC migration, but a later role for Annexin A6 in cranial ganglia assembly has not been investigated. We hypothesize that Annexin A6 acts a core cytoskeletal scaffold in cranial ganglia neurons to facilitate cranial ganglia formation. In support of this, our results show that placode cell-derived neurons express Annexin A6 during cranial ganglia assembly, and that expression is maintained throughout cranial gangliogenesis. Annexin A6 is also observed in neurons within the dorsal root ganglia and ventral neural tube, suggesting that Annexin A6 may be a specific neuronal marker. To investigate the function of Annexin A6 within the placode cells of the assembling cranial ganglia, we used a gene perturbation approach. Annexin A6 depletion from developing placode cells does not affect placode cell-derived neurons’ position within the ganglionic anlage nor disturb the surrounding neural crest cell corridors. Annexin A6 knockdown in placode cells results in neurons that produce very few short and/or no axonal projections instead of the normal bipolar morphology observed in the presence of Annexin A6. Placode cell-derived neurons with reduced level of Annexin A6 still express mature neuronal markers, they do not possess two long processes, which are characteristic morphological features of mature neurons, and fail to innervate their designated targets due to the absence of this bipolar morphology. In keeping with these results, Annexin A6 overexpression causes some placode cell-derived neurons to form extra protrusions alongside these bipolar processes. These data demonstrate that the molecular program associated with neuronal maturation is distinct from that orchestrating changes in neuronal morphology, and, importantly, reveal Annexin A6 to be a key membrane scaffolding protein during neuron membrane biogenesis.Item OPTIMIZING GENE TARGETING METHODOLOGIES USING CRISPR/CAS RIBONUCLEOPROTEINS IN PORCINE SOMATIC CELLS(2016) Kim, Chan Mi; Telugu, Bhanu P; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The pig is one of the most valuable animal models for agricultural and biomedical research. In this thesis, we sought to standardize procedures for routine gene targeting and demonstrate that it is possible to create site-specific knockins of short DNA sequences in a locus of our interest, specifically downstream of a pig insulin gene and a ubiquitously expressed COL1A gene in pigs. Our study successfully established and optimized protocol for CRISPR/Cas mediated knockin in porcine somatic cells, while simultaneously creating a stable platform for future transgene integration and stepping forward to perform more efficient porcine transgenesis in the future.Item Genetic Suppressors of mrp-5 Lethality in C. elegans(2016) Beardsley, Simon; Hamza, Iqbal; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)Heme is an essential cofactor in numerous proteins, but is also cytotoxic. Thus, directed pathways must exist for regulating heme homeostasis. C. elegans is a powerful genetic animal model for elucidating these pathways because it is a heme auxotroph. Worms acquire dietary heme though HRG-1-related importers, and intestinal export was demonstrated to be mediated by the ABC transporter MRP-5. Loss of mrp-5 results in embryonic lethality. Although heme transporters have been identified, there are significant gaps in our understanding for the heme trafficking beyond HRG-1 and MRP-5. To identify additional components, we conducted a forward genetic screen utilizing the null allele mrp-5(ok2067). Screening of 160,000 haploid genomes yielded thirty-two mrp-5(ok2067) suppressor mutants. Deep-sequencing variant analysis revealed three of the suppressors subunits of adapter protein complex 3 (AP-3). We now seek to identify mechanisms for how adaptor protein deficiencies bypass a defect in MRP-5-mediated heme export.Item MOLECULAR MECHANISMS UNDERLYING CADHERIN-6B INTERNALIZATION IN PREMIGRATORY CRANIAL NEURAL CREST CELLS DURING THEIR EPITHELIAL-TO-MESENCHYMAL TRANSITION(2015) Padmanabhan, Rangarajan; Taneyhill, Lisa A; Animal Sciences; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The generation of migratory cells from immotile precursors occurs frequently throughout development and is crucial to the formation and maintenance of a functioning organism. This phenomenon, called an epithelial-to-mesenchymal transition (EMT), involves the disassembly of intercellular adhesions and cytoskeletal rearrangements in order to promote migration. Importantly, aberrant EMTs and cell migration can lead to devastating human conditions including cancer metastasis and fibrosis. How cells accomplish EMT to become migratory is still an unanswered question in the biomedical field. To this end, we use chick neural crest cells as an in vivo model to elucidate the molecules and pathways that regulate EMT and migration. Neural crest cells are a population of embryonic cells that are originally stationary within the dorsal neural tube but later migrate to form a variety of adult derivatives, such as the craniofacial skeleton, skin pigment cells and portions of the heart. To facilitate EMT, chick premigratory neural crest cells lose intercellular contacts mediated, in part, by the transmembrane cell adhesion protein Cadherin-6B (Cad6B). While Cad6B mRNA is transcriptionally repressed in premigratory neural crest cells, loss of Cad6B protein does not directly follow and instead occurs ~90 minutes later, just prior to migration. This rapid depletion of Cad6B is all the more striking given that the half-life of most cadherins, including Cad6B, is ~6-8 hours in vitro. As such, unique post- translational mechanisms must exist to remove Cad6B from premigratory neural crest cell plasma membranes to facilitate neural crest EMT. Since cadherins are known to be downregulated through internalization mechanisms (e.g., endocytosis, macropinocytosis) in other in vitro systems, the hypothesis of this dissertation is that Cad6B is internalized, and that this process plays a critical function to enable neural crest EMT. To this end, we document the existence of Cad6B cytoplasmic puncta in cultured cells, cultured neural crest cells and transverse sections of chick embryos. We subsequently identified a p120-catenin binding motif in the Cad6B cytoplasmic tail and demonstrated its functionality through site-directed mutagenesis, revealing a role in enhancing Cad6B internalization and reducing the stability of membrane-bound Cad6B. Furthermore, we uncover for the first time that Cad6B is removed from premigratory cranial neural crest cells through cell surface internalization events that include clathrin-mediated endocytosis and macropinocytosis. Both of these processes are dependent upon the function of dynamin, and inhibition of Cad6B internalization abrogates neural crest cell EMT and migration. Collectively, our findings provide a molecular blueprint for how cadherins are dynamically regulated during the formation of migratory cell types required for normal embryonic development and tissue repair as well as those generated during human diseases and cancers. Importantly, our research is multi-disciplinary, integrating cell biology and physiology to reveal how a cellular event, the active downregulation of a membrane protein, results in a physiological event, neural crest EMT and migration.