Computer Science Research Works

Permanent URI for this collectionhttp://hdl.handle.net/1903/1593

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Perplexity: evaluating transcript abundance estimation in the absence of ground truth
    (Springer Nature, 2022-03-25) Fan, Jason; Chan, Skylar; Patro, Rob
    There has been rapid development of probabilistic models and inference methods for transcript abundance estimation from RNA-seq data. These models aim to accurately estimate transcript-level abundances, to account for different biases in the measurement process, and even to assess uncertainty in resulting estimates that can be propagated to subsequent analyses. The assumed accuracy of the estimates inferred by such methods underpin gene expression based analysis routinely carried out in the lab. Although hyperparameter selection is known to affect the distributions of inferred abundances (e.g. producing smooth versus sparse estimates), strategies for performing model selection in experimental data have been addressed informally at best. We derive perplexity for evaluating abundance estimates on fragment sets directly. We adapt perplexity from the analogous metric used to evaluate language and topic models and extend the metric to carefully account for corner cases unique to RNA-seq. In experimental data, estimates with the best perplexity also best correlate with qPCR measurements. In simulated data, perplexity is well behaved and concordant with genome-wide measurements against ground truth and differential expression analysis. Furthermore, we demonstrate theoretically and experimentally that perplexity can be computed for arbitrary transcript abundance estimation models. Alongside the derivation and implementation of perplexity for transcript abundance estimation, our study is the first to make possible model selection for transcript abundance estimation on experimental data in the absence of ground truth.
  • Item
    Simultaneous transcriptional profiling of Leishmania major and its murine macrophage host cell reveals insights into host-pathogen interactions
    (Springer Nature, 2015-12-29) Dillon, Laura A. L.; Suresh, Rahul; Okrah, Kwame; Corrada Bravo, Hector; Mosser, David M.; El-Sayed, Najib M.
    Parasites of the genus Leishmania are the causative agents of leishmaniasis, a group of diseases that range in manifestations from skin lesions to fatal visceral disease. The life cycle of Leishmania parasites is split between its insect vector and its mammalian host, where it resides primarily inside of macrophages. Once intracellular, Leishmania parasites must evade or deactivate the host's innate and adaptive immune responses in order to survive and replicate. We performed transcriptome profiling using RNA-seq to simultaneously identify global changes in murine macrophage and L. major gene expression as the parasite entered and persisted within murine macrophages during the first 72 h of an infection. Differential gene expression, pathway, and gene ontology analyses enabled us to identify modulations in host and parasite responses during an infection. The most substantial and dynamic gene expression responses by both macrophage and parasite were observed during early infection. Murine genes related to both pro- and anti-inflammatory immune responses and glycolysis were substantially upregulated and genes related to lipid metabolism, biogenesis, and Fc gamma receptor-mediated phagocytosis were downregulated. Upregulated parasite genes included those aimed at mitigating the effects of an oxidative response by the host immune system while downregulated genes were related to translation, cell signaling, fatty acid biosynthesis, and flagellum structure. The gene expression patterns identified in this work yield signatures that characterize multiple developmental stages of L. major parasites and the coordinated response of Leishmania-infected macrophages in the real-time setting of a dual biological system. This comprehensive dataset offers a clearer and more sensitive picture of the interplay between host and parasite during intracellular infection, providing additional insights into how pathogens are able to evade host defenses and modulate the biological functions of the cell in order to survive in the mammalian environment.
  • Item
    Yanagi: Fast and interpretable segment-based alternative splicing and gene expression analysis
    (Springer Nature, 2019-08-13) Gunady, Mohamed K; Mount, Stephen M; Bravo, Héctor Corrada
    Ultra-fast pseudo-alignment approaches are the tool of choice in transcript-level RNA sequencing (RNA-seq) analyses. Unfortunately, these methods couple the tasks of pseudo-alignment and transcript quantification. This coupling precludes the direct usage of pseudo-alignment to other expression analyses, including alternative splicing or differential gene expression analysis, without including a non-essential transcript quantification step.
  • Item
    TopHat-Fusion: an algorithm for discovery of novel fusion transcripts
    (2011-08-11) Kim, Daehwan; Salzberg, Steven L
    TopHat-Fusion is an algorithm designed to discover transcripts representing fusion gene products, which result from the breakage and re-joining of two different chromosomes, or from rearrangements within a chromosome. TopHat-Fusion is an enhanced version of TopHat, an efficient program that aligns RNA-seq reads without relying on existing annotation. Because it is independent of gene annotation, TopHat-Fusion can discover fusion products deriving from known genes, unknown genes and unannotated splice variants of known genes. Using RNA-seq data from breast and prostate cancer cell lines, we detected both previously reported and novel fusions with solid supporting evidence. TopHat-Fusion is available at http://tophat-fusion.sourceforge.net/.