Gemstone Team Research

Permanent URI for this collectionhttp://hdl.handle.net/1903/9070

The Gemstone Program at the University of Maryland is a unique multidisciplinary four-year research program for selected undergraduate honors students of all majors. Under guidance of faculty mentors and Gemstone staff, teams of students design, direct and conduct significant research, often but not exclusively exploring the interdependence of science and technology with society. Gemstone students are members of a living-learning community comprised of fellow students, faculty and staff who work together to enrich the undergraduate experience. This community challenges and supports the students in the development of their research, teamwork, communication and leadership skills. In the fourth year, each team of students presents its research in the form of a thesis to experts, and the students complete the program with a citation and a tangible sense of accomplishment.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Agronomic and economic viability of Miscanthus x giganteus as a novel biofuel in the Maryland climate
    (2012) Ambalavanar, Vishney; Kang, Michael; Kulp, Felicia; Michaels, Theodore; Muroyama, Alexander; Rehman, Saad; Sokoya, Olufemi; Trivedi, Aalap; Xie, Kaiyi; Felton, Gary
    Our study examined the effects of land quality and water-absorbent polymer on the growth of Miscanthus x giganteus. Our goal was to help utilize previously uncultivable land efficiently and meet U.S. energy goals. Currently, most U.S. biofuel is produced from corn, which requires arable land for growth and therefore significantly disrupts the production of food crops. We predicted that M. x giganteus would be able to thrive on marginal land, unlike corn, with the aid of a water-absorbing polymer. After growing M. x giganteus on both arable and marginal land, with and without the application of a polymer, we found that our crop grew better on the arable land. We also found that the presence of the water-absorbing polymer in the soil did not affect the growth of M. x giganteus. Finally, an economic cost-benefit analysis showed that growing M. x giganteus would not be a viable commercial enterprise, without the use of a commercial fertilizer and based on existing revenue and expense scenarios.
  • Thumbnail Image
    Item
    Characterization and analysis of the exogenous application of selected phytohormones on C. reinhardtii metabolism
    (2011) Chang, Andrew; Chang, Maria; Feng, Patrick; Khural, Jasjeet; Luo, Tana; McCarthy, James; Mekelburg, Cory; Nadig, Kelsey; Perry, Christine; Thaper, Sharad; Urbanski, Rick; Vohra, Pragun; Weber, Christian; Wong, Justin; Kahn, Jason D.
    Introduction of algal biofuel on an industrial scale will only be possible if production cost can be lowered, either by speeding algal growth, increasing lipid production per cell, or both. Our approach examined the application of phytohormones to algae to reach this goal. Bioinformatics and literature led us to four phytohormones: Indole-3-acetic acid, Epibrassinolide, Trans-zeatin, and Trans-zeatin-riboside. These were systematically introduced to algae at a range of concentrations. IAA, Epibrassinolide, and Trans-zeatin-riboside increased algae growth rates at concentrations of 10-8M to 10-12M. A treatment of Trans-zeatin-riboside yielded an increase in growth rate of 31.1 ± 9.4% (p < 0.05, n=8), an increase in algal dry mass by 38.9 ± 11.9% (p < 0.05, n=8), a negligable change in specific lipid mass (p < 0.05, n=8), and, most notably, a lipid concentration increase of 44.6 ± 42.1% (p < 0.05, n=8). A treatment of Trans-zeatin-riboside at 10-11 M yields practical benefits to biodiesel production.