Gemstone Team Research

Permanent URI for this collectionhttp://hdl.handle.net/1903/9070

The Gemstone Program at the University of Maryland is a unique multidisciplinary four-year research program for selected undergraduate honors students of all majors. Under guidance of faculty mentors and Gemstone staff, teams of students design, direct and conduct significant research, often but not exclusively exploring the interdependence of science and technology with society. Gemstone students are members of a living-learning community comprised of fellow students, faculty and staff who work together to enrich the undergraduate experience. This community challenges and supports the students in the development of their research, teamwork, communication and leadership skills. In the fourth year, each team of students presents its research in the form of a thesis to experts, and the students complete the program with a citation and a tangible sense of accomplishment.

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Developing A Broadly Protective MRNA Influenza Vaccine: A Review
    (2022) Acquah, Wellington; Amini, Cameron; Buddula, Saharsh; Chen, Michelle; Chintala, Navya; Dang, Quinn; Ferziger, Noa; Hollis, Grace; Jameison, Devin; Jayaram, Jyostna; Manus, Joseph Anthony; Rosenberg, Jacob; Zhiteneva, Julia; Yarwood, Stephanie
    Current influenza vaccines are limited in their efficacy due to antigenic drift of the hemagglutinin target; advances in mRNA vaccines in response to the COVID-19 pandemic may provide a new direction for influenza vaccine development. Existing literature shows that mRNA vaccines have higher efficacy in preventing illness, hospitalizations, and death. We evaluated eleven influenza A viral proteins as potential targets for an mRNA vaccine under the following criteria: degree of conservation, ability to elicit a robust immune response, and ability to prevent illness and death. We recommend future researchers direct their efforts towards developing an annually administered tri-sequence mRNA vaccine targeting hemagglutinin head (HA1), the matrix 2 ectodomain (M2e), and nucleoprotein (NP). Development of a highly effective influenza mRNA vaccine would be significant for prevention of disease burden worldwide.