Geography Theses and Dissertations
Permanent URI for this collectionhttp://hdl.handle.net/1903/2773
Browse
2 results
Search Results
Item Advances in Mapping Forest Biomass and Old-Growth Conditions Using Waveform Lidar(2023) Bruening, Jamis; Dubayah, Ralph; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The Global Ecosystem Dynamics Investigation (GEDI) is a spaceborne waveform lidar sys- tem that has transformed scientific understanding of the world’s forests through billions of pre- cise measurements of ecosystem structure. Relative to forest processes that operate on decadal to millennial timescales, the four year period during which GEDI collected these measurements is short, and GEDI’s ability to analyze how forest structure changes over time is mostly unproven. However, fusion efforts that integrate GEDI data with forest inventory measurements and ecosys- tem models hold immense potential for discovery. In this dissertation, I explore the limitations and capabilities of GEDI data for inference into structural and successional dynamics within east- ern US forests. First, I used a forest gap model to quantify uncertainty in biomass predictions for individual GEDI waveforms, and discovered a relationship between biomass uncertainty and successional stage. Next, I investigated uncertainties and errors in large-scale GEDI biomass estimates relative to unbiased estimates from the US forest inventory. I developed a novel mod- eling framework based on fusion between GEDI and the US forest inventory data that corrected these errors, and I produced unbiased and precise maps of forest biomass for the continental US. Lastly, I assessed GEDI’s ability to identify and map different types of old-growth forests, and discovered that GEDI can detect some old forests more effectively than others. This research identified key limitations associated with using GEDI to study forest dynamics, and I leveraged these discoveries to develop new ways of using GEDI data for ecological and successional in- ference. These discoveries will inform new uses of GEDI data and its integration with inventory data and ecosystem modeling to better characterize changes within forest ecosystems.Item FUSING GEDI LIDAR AND TANDEM-X INSAR OBSERVATIONS FOR IMPROVED FOREST STRUCTURE AND BIOMASS MAPPING(2018) Qi, Wenlu; Dubayah, Ralph; Geography; Digital Repository at the University of Maryland; University of Maryland (College Park, Md.)The upcoming NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission presents an unprecedented opportunity to advance current global biomass estimates. However, gaps are expected between GEDI’s ground tracks, requiring the development of fusion-based methodologies to contiguously map forest biomass at satisfactory resolutions and accuracies. This dissertation is built on the complementary advantages of observations from GEDI and DLR’s TerraSAR-X/TanDEM-X (TDX)) Interferometric Synthetic Aperture Radar (InSAR) mission. To meet the goal of mapping forest structure and biomass contiguously and accurately, three types of fusion strategies have been investigated. First, a simulated GEDI-derived digital terrain model (DTM) was utilized to improve height estimation from TDX. Forest heights were initially derived from TDX coherence alone as a baseline using the widely used Random Volume over Ground (RVoG) scattering model. Here, assumptions about RVoG parameters – extinction coefficient (σ) and ground-to-volume amplitude ratio (µ) – were made. Using an external DTM derived from simulated GEDI lidar data, RVoG model was used to calculate spatially varied σ values and derived forest heights with better accuracy. TDX forest height estimation was further improved with the aid of simulated GEDI-derived DTM and canopy heights. The additional use of simulated GEDI canopy heights as RVoG input not just refined σ but also enabled the estimation of µ. Based on these parameters, forest heights were improved across three different forest types; biases were reduced from 1.7–3.8 m using only simulated GEDI DTMs to -0.9–1.1 m by using both simulated GEDI DTMs and canopy heights. Finally, wall-to-wall TDX heights were used to improve biomass estimates from simulated GEDI data over three contrasting forest types. When using simulated GEDI sampled observations alone, uncertainties were estimated statistically to be 9.0–19.9% at 1 km. These were improved to 5.2–11.7% at the same resolution by upscaling simulated GEDI footprint biomass with TDX heights. The GEDI/TDX data fusion also enabled the generation of biomass maps at a fine spatial resolution of 100 m, with uncertainties estimated to be 6.0–14.0%. Through the exploration of these fusion strategies, it has been demonstrated that a fusion-based mapping method could realize the generation of forest biomass products from GEDI with unprecedented resolutions and accuracies, while taking advantage of global seamless observations from TDX.