Next-generation Mass Spectrometry With Multi-omics For Discoveries In Cell And Neurodevelopmental Biology

Loading...
Thumbnail Image

Files

Li_umd_0117E_22965.pdf (9.45 MB)
(RESTRICTED ACCESS)
No. of downloads:

Publication or External Link

Date

2022

Authors

Citation

Abstract

Understanding tissue formation advances our understanding of the causes of disease and the obtained knowledge can be potentially applied to develop personalized interventions. However, to explore the underlying mechanisms that govern tissue formation, there is a high and unmet need to develop new technologies to characterize different types of biomolecules from early-stage embryonic precursor cells and their descendent cells during development. This dissertation discusses new technological advancements to facilitate multi-omic (proteomic and metabolomic) analysis to explore cell-to-cell differences and uncover mechanisms underlying tissue formation. The work presented herein illustrates the development of in vivo microsampling and single-cell mass spectrometry (MS) to uncover cell heterogeneity among embryonic cells. Additionally, this dissertation work studies the biological role of metabolites in cell fate determination by exploring the mechanisms underlying metabolite-induced cell fate change. Moreover, this work introduces a novel technique called MagCar developed to track and isolate tissue-specific cells at later stages, which enables studying temporal molecular changes to gain new information about tissue formation.

Notes

Rights