An Analysis of the Rayleigh--Ritz Method for Approximating Eigenspaces\symbolmark{1}

dc.contributor.authorJia, Zhongxiaoen_US
dc.contributor.authorStewart, G. W.en_US
dc.date.accessioned2004-05-31T22:57:10Z
dc.date.available2004-05-31T22:57:10Z
dc.date.created1999-05en_US
dc.date.issued1999-05-11en_US
dc.description.abstractThis paper concerns the Rayleigh--Ritz method for computing an approximation to an eigenspace $\clx$ of a general matrix $A$ from a subspace $\clw$ that contains an approximation to $\clx$. The method produces a pair $(N, \tilde X)$ that purports to approximate a pair $(L, X)$, where $X$ is a basis for $\clx$ and $AX = XL$. In this paper we consider the convergence of $(N, \tilde X)$ as the sine $\epsilon$ of the angle between $\clx$ and $\clw$ approaches zero. It is shown that under a natural hypothesis\,---\,called the uniform separation condition\,---\,the Ritz pairs $(N, \tilde X)$ converge to the eigenpair $(L, X)$. When one is concerned with eigenvalues and eigenvectors, one can compute certain refined Ritz vectors whose convergence is guaranteed, even when the uniform separation condition is not satisfied. An attractive feature of the analysis is that it does not assume that $A$ has distinct eigenvalues or is diagonalizable. (Also cross-referenced as UMIACS-TR-99-24)en_US
dc.format.extent173975 bytes
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/1903/1007
dc.language.isoen_US
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_US
dc.relation.isAvailableAtUniversity of Maryland (College Park, Md.)en_US
dc.relation.isAvailableAtTech Reports in Computer Science and Engineeringen_US
dc.relation.isAvailableAtUMIACS Technical Reportsen_US
dc.relation.ispartofseriesUM Computer Science Department; CS-TR-4016en_US
dc.relation.ispartofseriesUMIACS; UMIACS-TR-99-24en_US
dc.titleAn Analysis of the Rayleigh--Ritz Method for Approximating Eigenspaces\symbolmark{1}en_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
CS-TR-4016.ps
Size:
169.9 KB
Format:
Postscript Files
Loading...
Thumbnail Image
Name:
CS-TR-4016.pdf
Size:
210.5 KB
Format:
Adobe Portable Document Format
Description:
Auto-generated copy of CS-TR-4016.ps