Gene expression anti-profiles as a basis for accurate universal cancer signatures

dc.contributor.authorCorrada Bravo, Héctor
dc.contributor.authorPihur, Vasyl
dc.contributor.authorMcCall, Matthew
dc.contributor.authorIrizarry, Rafael A
dc.contributor.authorLeek, Jeffrey T
dc.date.accessioned2013-01-10T21:54:38Z
dc.date.available2013-01-10T21:54:38Z
dc.date.issued2012-10-22
dc.description.abstractBackground: Early screening for cancer is arguably one of the greatest public health advances over the last fifty years. However, many cancer screening tests are invasive (digital rectal exams), expensive (mammograms, imaging) or both (colonoscopies). This has spurred growing interest in developing genomic signatures that can be used for cancer diagnosis and prognosis. However, progress has been slowed by heterogeneity in cancer profiles and the lack of effective computational prediction tools for this type of data. Results: We developed anti-profiles as a first step towards translating experimental findings suggesting that stochastic across-sample hyper-variability in the expression of specific genes is a stable and general property of cancer into predictive and diagnostic signatures. Using single-chip microarray normalization and quality assessment methods, we developed an anti-profile for colon cancer in tissue biopsy samples. To demonstrate the translational potential of our findings, we applied the signature developed in the tissue samples, without any further retraining or normalization, to screen patients for colon cancer based on genomic measurements from peripheral blood in an independent study (AUC of 0.89). This method achieved higher accuracy than the signature underlying commercially available peripheral blood screening tests for colon cancer (AUC of 0.81). We also confirmed the existence of hyper-variable genes across a range of cancer types and found that a significant proportion of tissue-specific genes are hyper-variable in cancer. Based on these observations, we developed a universal cancer anti-profile that accurately distinguishes cancer from normal regardless of tissue type (ten-fold cross-validation AUC > 0.92). Conclusions: We have introduced anti-profiles as a new approach for developing cancer genomic signatures that specifically takes advantage of gene expression heterogeneity. We have demonstrated that anti-profiles can be successfully applied to develop peripheral-blood based diagnostics for cancer and used anti-profiles to develop a highly accurate universal cancer signature. By using single-chip normalization and quality assessment methods, no further retraining of signatures developed by the anti-profile approach would be required before their application in clinical settings. Our results suggest that anti-profiles may be used to develop inexpensive and non-invasive universal cancer screening tests.en_US
dc.description.urihttps://doi.org/10.1186/1471-2105-13-272
dc.identifier.citationCorrada Bravo, H., Pihur, V., McCall, M. et al. Gene expression anti-profiles as a basis for accurate universal cancer signatures. BMC Bioinformatics 13, 272 (2012).en_US
dc.identifier.urihttp://hdl.handle.net/1903/13390
dc.language.isoen_USen_US
dc.relation.isAvailableAtCollege of Computer, Mathematical & Natural Sciencesen_us
dc.relation.isAvailableAtComputer Scienceen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.subjectGene expressionen_US
dc.subjectCanceren_US
dc.subjectGenomic signaturesen_US
dc.subjectMicroarray normalization and quality assessmenten_US
dc.subjectAnti-profilesen_US
dc.titleGene expression anti-profiles as a basis for accurate universal cancer signaturesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bravo.pdf
Size:
1.84 MB
Format:
Adobe Portable Document Format