Anomaly Detection for Symbolic Representations

Loading...
Thumbnail Image

Files

CS-TR-5036.pdf (809.54 KB)
No. of downloads: 480

Publication or External Link

Date

2014-03-25

Advisor

Citation

DRUM DOI

Abstract

A fully autonomous agent recognizes new problems, explains what causes such problems, and generates its own goals to solve these problems. Our approach to this goal-driven model of autonomy uses a methodology called the Note-Assess-Guide procedure. It instantiates a monitoring process in which an agent notes an anomaly in the world, assesses the nature and cause of that anomaly, and guides appropriate modifications to behavior. This report describes a novel approach to the note phase of that procedure. A-distance, a sliding-window statistical distance metric, is applied to numerical vector representations of intermediate states from plans generated for two symbolic domains. Using these representations, the metric is able to detect anomalous world states caused by restricting the actions available to the planner.

Notes

Rights