A Parallel Block Multi-level Preconditioner for the 3D Incompressible Navier--Stokes Equations

dc.contributor.authorElman, Howarden_US
dc.contributor.authorHowle, V. E.en_US
dc.contributor.authorShadid, Johnen_US
dc.contributor.authorTuminaro, Rayen_US
dc.date.accessioned2004-05-31T23:22:48Z
dc.date.available2004-05-31T23:22:48Z
dc.date.created2002-10en_US
dc.date.issued2002-10-25en_US
dc.description.abstractThe development of robust and efficient algorithms for both steady-state simulations and fully-implicit time integration of the Navier--Stokes equations is an active research topic. To be effective, the linear subproblems generated by these methods require solution techniques that exhibit robust and rapid convergence. In particular, they should be insensitive to parameters in the problem such as mesh size, time step, and Reynolds number. In this context, we explore a parallel preconditioner based on a block factorization of the coefficient matrix generated in an Oseen nonlinear iteration for the primitive variable formulation of the system. The key to this preconditioner is the approximation of a certain Schur complement operator by a technique first proposed by Kay, Loghin, and Wathen [25] and Silvester, Elman, Kay, and Wathen [45]. The resulting operator entails subsidiary computations (solutions of pressure Poisson and convection--diffusion subproblems) that are similar to those required for decoupled solution methods; however, in this case these solutions are applied as preconditioners to the coupled Oseen system. One important aspect of this approach is that the convection--diffusion and Poisson subproblems are significantly easier to solve than the entire coupled system, and a solver can be built using tools developed for the subproblems. In this paper, we apply smoothed aggregation algebraic multigrid to both subproblems. Previous work has focused on demonstrating the optimality of these preconditioners with respect to mesh size on serial, two-dimensional, steady-state computations employing geometric multi-grid methods; we focus on extending these methods to large-scale, parallel, three-dimensional, transient and steady-state simulations employing algebraic multigrid (AMG) methods. Our results display nearly optimal convergence rates for steady-state solutions as well as for transient solutions over a wide range of CFL numbers on the two-dimensional and three-dimensional lid-driven cavity problem. Also UMIACS-TR-2002-95en_US
dc.format.extent3333104 bytes
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/1903/1239
dc.language.isoen_US
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_US
dc.relation.isAvailableAtUniversity of Maryland (College Park, Md.)en_US
dc.relation.isAvailableAtTech Reports in Computer Science and Engineeringen_US
dc.relation.isAvailableAtUMIACS Technical Reportsen_US
dc.relation.ispartofseriesUM Computer Science Department; CS-TR-4415en_US
dc.relation.ispartofseriesUMIACS; UMIACS-TR-2002-95en_US
dc.titleA Parallel Block Multi-level Preconditioner for the 3D Incompressible Navier--Stokes Equationsen_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
CS-TR-4415.ps
Size:
3.18 MB
Format:
Postscript Files
Loading...
Thumbnail Image
Name:
CS-TR-4415.pdf
Size:
821.78 KB
Format:
Adobe Portable Document Format
Description:
Auto-generated copy of CS-TR-4415.ps