Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations

Loading...
Thumbnail Image

Files

CS-TR-3283.ps (799.22 KB)
No. of downloads: 293
CS-TR-3283.pdf (465.14 KB)
No. of downloads: 2295

Publication or External Link

Date

1998-10-15

Advisor

Citation

DRUM DOI

Abstract

Discretization and linearization of the steady-state Navier-Stokes equations gives rise to a nonsymmetric indefinite linear system of equations. In this paper, we introduce preconditioning techniques for such systems with the property that the eigenvalues of the preconditioned matrices are bounded independently of the mesh size used in the discretization. We confirm and supplement these analytic results with a series of numerical experiments indicating that Krylov subspace iterative methods for nonsymmetric systems display rates of convergence that are independent of the mesh parameter. In addition, we show that preconditioning costs can be kept small by using iterative methods for some intermediate steps performed by the preconditioner. (Also cross-referenced as UMIACS-TR-94-66)

Notes

Rights