High-resolution non-oscillatory central schemes with non-staggered grids for hyperbolic conservation laws
Files
Publication or External Link
Date
Advisor
Citation
DRUM DOI
Abstract
We present a general procedure to convert schemes which are based on staggered spatial grids into nonstaggered schemes. This procedure is then used to construct a new family of nonstaggered, central schemes for hyperbolic conservation laws by converting the family of staggered central schemes recently introduced in [H. Nessyahu and E. Tadmor, J. Comput. Phys., 87 (1990), pp. 408{463; X. D. Liu and E. Tadmor, Numer. Math., 79 (1998), pp. 397{425; G. S. Jiang and E. Tadmor, SIAM J. Sci. Comput., 19 (1998), pp. 1892{1917]. These new nonstaggered central schemes retain the desirable properties of simplicity and high resolution, and in particular, they yield Riemann-solver-free recipes which avoid dimensional splitting. Most important, the new central schemes avoid staggered grids and hence are simpler to implement in frameworks which involve complex geometries and boundary conditions.