Fractals for Secondary Key Retrieval

dc.contributor.authorFaloutsos, Christosen_US
dc.contributor.authorRoseman, Sharien_US
dc.date.accessioned2004-05-31T22:20:52Z
dc.date.available2004-05-31T22:20:52Z
dc.date.created1989-05en_US
dc.date.issued1998-10-15en_US
dc.description.abstractIn this paper we propose the use of fractals and especially the Hilbert curve, in order to design good distance-preserving mappings. Such mappings improve the performance of secondary-key- and spatial- access methods, where multi-dimensional points have to be stored on an 1-dimensional medium (e.g., disk). Good clustering reduces the number of disk accesses on retrieval, improving the response time. Our experiments on range queries and nearest neighbor queries showed that the proposed Hilbert curve achieves better clustering than older methods ("bit-shuffling", or Peano curve), for every situation we tried. (Also cross-referenced as UMIACS-TR-89-47)en_US
dc.format.extent125320 bytes
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/1903/543
dc.language.isoen_US
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_US
dc.relation.isAvailableAtUniversity of Maryland (College Park, Md.)en_US
dc.relation.isAvailableAtTech Reports in Computer Science and Engineeringen_US
dc.relation.isAvailableAtUMIACS Technical Reportsen_US
dc.relation.ispartofseriesUM Computer Science Department; CS-TR-2242en_US
dc.relation.ispartofseriesUMIACS; UMIACS-TR-89-47en_US
dc.titleFractals for Secondary Key Retrievalen_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
CS-TR-2242.ps
Size:
122.38 KB
Format:
Postscript Files
Loading...
Thumbnail Image
Name:
CS-TR-2242.pdf
Size:
58.75 KB
Format:
Adobe Portable Document Format
Description:
Auto-generated copy of CS-TR-2242.ps