CARS: A New Code Generation Framework for Clustered ILP Processors

Thumbnail Image

Files (452.16 KB)
No. of downloads: 340
CS-TR-4165.pdf (322.7 KB)
No. of downloads: 1335

Publication or External Link







Clustered ILP processors are characterized by a large number of non-centralized on-chip resources grouped into clusters. Traditional code generation schemes for these processors consist of multiple phases for cluster assignment, register allocation and instruction scheduling. Most of these approaches need additional re-scheduling phases because they often do not impose finite resource constraints in all phases of code generation. These phase-ordered solutions have several drawbacks, resulting in the generation of poor performance code. Moreover, the iterative/back-tracking algorithms used in some of these schemes have large running times. In this report we present CARS, a code generation framework for Clustered ILP processors, which combines the cluster assignment, register allocation, and instruction scheduling phases into a single code generation phase, thereby eliminating the problems associated with phase-ordered solutions. The CARS algorithm explicitly takes into account all the resource constraints at each cluster scheduling step to reduce spilling and to avoid iterative re-scheduling steps. We also present a new on-the-fly register allocation scheme developed for CARS. We describe an implementation of the proposed code generation framework and the results of a performance evaluation study using the SPEC95/2000 and MediaBench benchmarks. (Also cross-referenced as UMIACS-TR-2000-55)