The Orthogonal QD-Algorithm

dc.contributor.authorMatt, Urs vonen_US
dc.date.accessioned2004-05-31T22:25:00Z
dc.date.available2004-05-31T22:25:00Z
dc.date.created1994-09en_US
dc.date.issued1998-10-15en_US
dc.description.abstractThe orthogonal qd-algorithm is presented to compute the singular value decomposition of a bidiagonal matrix. This algorithm represents a modification of Rutishauser's qd-algorithm, and it is capable of determining all the singular values to high relative precision. A generalization of the Givens transformation is also introduced, which has applications besides the orthogonal qd-algorithm. The shift strategy of the orthogonal qd-algorithm is based on Laguerre's method, which is used to compute a lower bound for the smallest singular value of the bidiagonal matrix. Special attention is devoted to the numerically stable evaluation of this shift. (Also cross-referenced as UMIACS-TR-94-9.1)en_US
dc.format.extent304579 bytes
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/1903/614
dc.language.isoen_US
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_US
dc.relation.isAvailableAtUniversity of Maryland (College Park, Md.)en_US
dc.relation.isAvailableAtTech Reports in Computer Science and Engineeringen_US
dc.relation.isAvailableAtUMIACS Technical Reportsen_US
dc.relation.ispartofseriesUM Computer Science Department; CS-TR-3211.1en_US
dc.relation.ispartofseriesUMIACS; UMIACS-TR-94-9.1en_US
dc.titleThe Orthogonal QD-Algorithmen_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
CS-TR-3211.1.ps
Size:
297.44 KB
Format:
Postscript Files
Loading...
Thumbnail Image
Name:
CS-TR-3211.1.pdf
Size:
318.37 KB
Format:
Adobe Portable Document Format
Description:
Auto-generated copy of CS-TR-3211.1.ps