Blind Deconvolution Using A Regularized Structured Total Least Norm Algorithm

dc.contributor.authorPruessner, Arminen_US
dc.contributor.authorO'Leary, Dianne P.en_US
dc.date.accessioned2004-05-31T21:09:45Z
dc.date.available2004-05-31T21:09:45Z
dc.date.created2001-11en_US
dc.date.issued2001-11-19en_US
dc.description.abstractRosen, Park and Glick proposed the structured total least norm (STLN) algorithm for solving problems in which both the matrix and the right-hand side contain errors. We extend this algorithm for ill-posed problems by adding regularization and use the resulting algorithm to solve blind deconvolution problems as encountered in image deblurring when both the image and the blurring function have uncertainty. The resulting regularized structured total least norm (RSTLN) algorithm preserves any affine structure of the matrix and minimizes the discrete L_p-norm error, where p=1,2, or infinity. We demonstrate the effectiveness of these algorithms for blind deconvolution.en_US
dc.format.extent584338 bytes
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/1903/527
dc.language.isoen_US
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_US
dc.relation.isAvailableAtUniversity of Maryland (College Park, Md.)en_US
dc.relation.isAvailableAtTech Reports in Computer Science and Engineeringen_US
dc.relation.isAvailableAtComputer Science Department Technical Reportsen_US
dc.relation.ispartofseriesUM Computer Science Department; CS-TR-4287en_US
dc.titleBlind Deconvolution Using A Regularized Structured Total Least Norm Algorithmen_US
dc.typeTechnical Reporten_US

Files

Original bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
CS-TR-4287.ps
Size:
570.64 KB
Format:
Postscript Files
Loading...
Thumbnail Image
Name:
CS-TR-4287.pdf
Size:
298.73 KB
Format:
Adobe Portable Document Format
Description:
Auto-generated copy of CS-TR-4287.ps