Using Recurrent Neural Networks to Learn the Structure of
Interconnection Networks
Using Recurrent Neural Networks to Learn the Structure of
Interconnection Networks
Loading...
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
A modified Recurrent Neural Network (RNN) is used to learn a Self-Routing Interconnection Network (SRIN) from a set of routing examples. The RNN is modified so that it has several distinct initial states. This is equivalent to a single RNN learning multiple different synchronous sequential machines. We define such a sequential machine structure as augmented and show that a SRIN is essentially an Augmented Synchronous Sequential Machine (ASSM). As an example, we learn a small six-switch SRIN. After training we extract the network's internal representation of the ASSM and corresponding SRIN. (Also cross-referenced as UMIACS-TR-94-20.)