On Graded QR Decompositions of Products of Matrices
On Graded QR Decompositions of Products of Matrices
Loading...
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
This paper is concerned with the singular values and vectors of a product $M_{m}=A_{1}A_{2}\cdots A_{m}$ of matrices of order $n$. The chief difficulty with computing them from directly from $M_{m}$ is that with increasing $m$ the ratio of the small to the large singular values of $M_{m}$ may fall below the rounding unit, so that the former are computed inaccurately. The solution proposed here is to compute recursively the factorization $M_{m} = QRP\trp$, where $Q$ is orthogonal, $R$ is a graded upper triangular, and $P\trp$ is a permutation. (Also cross-referenced as UMIACS-TR-94-53)