Better Metrics to Automatically Predict the Quality of a Text Summary

dc.contributor.authorRankel, Peter A.
dc.contributor.authorConroy, John M.
dc.contributor.authorSchlesinger, Judith D.
dc.date.accessioned2024-01-30T18:19:13Z
dc.date.available2024-01-30T18:19:13Z
dc.date.issued2012-09-26
dc.description.abstractIn this paper we demonstrate a family of metrics for estimating the quality of a text summary relative to one or more human-generated summaries. The improved metrics are based on features automatically computed from the summaries to measure content and linguistic quality. The features are combined using one of three methods—robust regression, non-negative least squares, or canonical correlation, an eigenvalue method. The new metrics significantly outperform the previous standard for automatic text summarization evaluation, ROUGE.
dc.description.urihttps://doi.org/10.3390/a5040398
dc.identifierhttps://doi.org/10.13016/dspace/e0xd-15t6
dc.identifier.citationRankel, P.A.; Conroy, J.M.; Schlesinger, J.D. Better Metrics to Automatically Predict the Quality of a Text Summary. Algorithms 2012, 5, 398-420.
dc.identifier.urihttp://hdl.handle.net/1903/31620
dc.language.isoen_US
dc.publisherMDPI
dc.relation.isAvailableAtCollege of Computer, Mathematical & Natural Sciencesen_us
dc.relation.isAvailableAtMathematicsen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.subjectmulti-document summarization
dc.subjectupdate summarization
dc.subjectevaluation
dc.subjectcomputational linguistics
dc.subjecttext processing
dc.titleBetter Metrics to Automatically Predict the Quality of a Text Summary
dc.typeArticle
local.equitableAccessSubmissionNo

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
algorithms-05-00398.pdf
Size:
401.02 KB
Format:
Adobe Portable Document Format