Pointwise error estimates for relaxation approximations to conservation laws

dc.contributor.authorTADMOR, EITAN
dc.contributor.authorTANG, TAO
dc.date.accessioned2008-10-20T17:59:36Z
dc.date.available2008-10-20T17:59:36Z
dc.date.issued2000
dc.description.abstractWe obtain sharp pointwise error estimates for relaxation approximation to scalar conservation laws with piecewise smooth solutions. We first prove that the first-order partial derivatives for the perturbation solutions are uniformly upper bounded (the so-called Lip+ stability). A one-sided interpolation inequality between classical L1 error estimates and Lip+ stability bounds enables us to convert a global L1 result into a (nonoptimal) local estimate. Optimal error bounds on the weighted error then follow from the maximum principle for weakly coupled hyperbolic systems. The main difficulties in obtaining the Lip+ stability and the optimal pointwise errors are how to construct appropriate “difference functions” so that the maximum principle can be applied.en
dc.format.extent193650 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.citationE. Tadmor & T. Tang (2001). Pointwise error estimates for relaxation approximations to conservation laws. SIAM Journal on Mathematical Analysis 32 (2001), 870-886.en
dc.identifier.urihttp://hdl.handle.net/1903/8647
dc.language.isoen_USen
dc.publisherCopyright: Society for Industrial and Applied Mathematicsen
dc.relation.isAvailableAtCollege of Computer, Mathematical & Physical Sciencesen_us
dc.relation.isAvailableAtMathematicsen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.subjectconservation lawsen
dc.subjecterror estimatesen
dc.subjectrelaxation methoden
dc.subjectoptimal convergence rateen
dc.subjectone-sided interpolation inequalityen
dc.subjectmaximum principleen
dc.titlePointwise error estimates for relaxation approximations to conservation lawsen
dc.typeArticleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tadmor-Tang.SIMA-01.pdf
Size:
189.11 KB
Format:
Adobe Portable Document Format