Evaluation of AlphaFold antibody–antigen modeling with implications for improving predictive accuracy

dc.contributor.authorYin, Rui
dc.contributor.authorPierce, Brian G.
dc.date.accessioned2024-07-02T17:31:32Z
dc.date.available2024-07-02T17:31:32Z
dc.date.issued2023-12-10
dc.description.abstractHigh resolution antibody–antigen structures provide critical insights into immune recognition and can inform therapeutic design. The challenges of experimental structural determination and the diversity of the immune repertoire underscore the necessity of accurate computational tools for modeling antibody–antigen complexes. Initial benchmarking showed that despite overall success in modeling protein–protein complexes, AlphaFold and AlphaFold-Multimer have limited success in modeling antibody–antigen interactions. In this study, we performed a thorough analysis of AlphaFold's antibody–antigen modeling performance on 427 nonredundant antibody–antigen complex structures, identifying useful confidence metrics for predicting model quality, and features of complexes associated with improved modeling success. Notably, we found that the latest version of AlphaFold improves near-native modeling success to over 30%, versus approximately 20% for a previous version, while increased AlphaFold sampling gives approximately 50% success. With this improved success, AlphaFold can generate accurate antibody–antigen models in many cases, while additional training or other optimization may further improve performance.
dc.description.urihttps://doi.org/10.1002/pro.4865
dc.identifierhttps://doi.org/10.13016/g5cw-pih7
dc.identifier.citationYin R, Pierce BG. Evaluation of AlphaFold antibody–antigen modeling with implications for improving predictive accuracy. Protein Science. 2024; 33(1):e4865.
dc.identifier.urihttp://hdl.handle.net/1903/33108
dc.language.isoen_US
dc.publisherWiley
dc.relation.isAvailableAtCell Biology & Molecular Geneticsen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtCollege of Computer, Mathematical & Natural Sciencesen_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.titleEvaluation of AlphaFold antibody–antigen modeling with implications for improving predictive accuracy
dc.typeArticle
local.equitableAccessSubmissionNo

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Protein Science - 2023 - Yin - Evaluation of AlphaFold antibody antigen modeling with implications for improving predictive.pdf
Size:
2.99 MB
Format:
Adobe Portable Document Format