A Stochastic Approach to Uncertainty in the Equations of MHD Kinematics

Thumbnail Image


CS-TR-5040.pdf (4.76 MB)
No. of downloads: 433

Publication or External Link







The magnetohydodynamic (MHD) kinematics model describes the electromagnetic behavior of an electrically conducting fluid when its hydrodynamic properties are assumed to be known. In particular, the MHD kinematics equations can be used to simulate the magnetic field induced by a given velocity field. While prescribing the velocity field leads to a simpler model than the fully coupled MHD system, this may introduce some epistemic uncertainty into the model. If the velocity of a physical system is not known with certainty, the magnetic field obtained from the model may not be reflective of the magnetic field seen in experiments. Additionally, uncertainty in physical parameters such as the magnetic resistivity may affect the reliability of predictions obtained from this model. By modeling the velocity and the resistivity as random variables in the MHD kinematics model, we seek to quantify the effects of uncertainty in these fields on the induced magnetic field. We develop stochastic expressions for these quantities and investigate their impact within a finite element discretization of the kinematics equations. We obtain mean and variance data through Monte-Carlo simulation for several test problems. Toward this end, we develop and test an efficient block preconditioner for the linear systems arising from the discretized equations.