Mapping 2000–2010 Impervious Surface Change in India Using Global Land Survey Landsat Data

dc.contributor.authorWang, Panshi
dc.contributor.authorHuang, Chengquan
dc.contributor.authorBrown de Colstoun, Eric C.
dc.date.accessioned2018-06-29T14:39:04Z
dc.date.available2018-06-29T14:39:04Z
dc.date.issued2017-04-13
dc.descriptionPartial funding for Open Access provided by the UMD Libraries' Open Access Publishing Fund.en_US
dc.description.abstractUnderstanding and monitoring the environmental impacts of global urbanization requires better urban datasets. Continuous field impervious surface change (ISC) mapping using Landsat data is an effective way to quantify spatiotemporal dynamics of urbanization. It is well acknowledged that Landsat-based estimation of impervious surface is subject to seasonal and phenological variations. The overall goal of this paper is to map 2000–2010 ISC for India using Global Land Survey datasets and training data only available for 2010. To this end, a method was developed that could transfer the regression tree model developed for mapping 2010 impervious surface to 2000 using an iterative training and prediction (ITP) approachAn independent validation dataset was also developed using Google Earth™ imagery. Based on the reference ISC from the validation dataset, the RMSE of predicted ISC was estimated to be 18.4%. At 95% confidence, the total estimated ISC for India between 2000 and 2010 is 2274.62 +/- 7.84 km2.en_US
dc.identifierhttps://doi.org/10.13016/M2ZG6G99M
dc.identifier.citationWang, P.; Huang, C.; Brown de Colstoun, E.C. Mapping 2000–2010 Impervious Surface Change in India Using Global Land Survey Landsat Data. Remote Sens. 2017, 9, 366; doi:10.3390/rs9040366en_US
dc.identifier.urihttp://hdl.handle.net/1903/20684
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.relation.isAvailableAtCollege of Behavioral & Social Sciencesen_us
dc.relation.isAvailableAtGeographyen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.subjectLandsaten_US
dc.subjectGlobal Land Surveyen_US
dc.subjectimpervious surface changeen_US
dc.subjecturbanizationen_US
dc.subjectiterative training and predictionen_US
dc.titleMapping 2000–2010 Impervious Surface Change in India Using Global Land Survey Landsat Dataen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
remotesensing-09-00366.pdf
Size:
11.69 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.57 KB
Format:
Item-specific license agreed upon to submission
Description: