The anisotropic min-max theory: Existence of anisotropic minimal and CMC surfaces

dc.contributor.authorDe Philippis, Guido
dc.contributor.authorDe Rosa, Antonio
dc.date.accessioned2024-07-01T19:19:51Z
dc.date.available2024-07-01T19:19:51Z
dc.date.issued2023-12-01
dc.description.abstractWe prove the existence of nontrivial closed surfaces with constant anisotropic mean curvature with respect to elliptic integrands in closed smooth 3–dimensional Riemannian manifolds. The constructed min-max surfaces are smooth with at most one singular point. The constant anisotropic mean curvature can be fixed to be any real number. In particular, we partially solve a conjecture of Allard in dimension 3.
dc.description.urihttps://doi.org/10.1002/cpa.22189
dc.identifierhttps://doi.org/10.13016/11mn-ar7i
dc.identifier.citationDe Philippis, G. and De Rosa, A. (2024), The anisotropic min-max theory: Existence of anisotropic minimal and CMC surfaces. Comm. Pure Appl. Math., 77: 3184-3226.
dc.identifier.urihttp://hdl.handle.net/1903/33005
dc.language.isoen_US
dc.publisherWiley
dc.relation.isAvailableAtCollege of Computer, Mathematical & Natural Sciencesen_us
dc.relation.isAvailableAtMathematicsen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.titleThe anisotropic min-max theory: Existence of anisotropic minimal and CMC surfaces
dc.typeArticle
local.equitableAccessSubmissionNo

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Comm Pure Appl Math - 2023 - De Philippis - The anisotropic min‐max theory Existence of anisotropic minimal and CMC.pdf
Size:
410.39 KB
Format:
Adobe Portable Document Format