An Updating Algorithm for Subspace Tracking
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
In certain signal processing applications it is required to compute the null space of a matrix whose rows are samples of a signal. The usual tool for doing this is the singular value decomposition. However, the singular value decomposition has the drawback that it requires $O(p^3)$ operations to recompute when a new sample arrives. In this paper, we show that a different decomposition, called the URV, decomposition is equally effective in exhibiting the null space and can be updated in $O(p^2)$ time. The updating technique can be run on a linear array of $p$ processors in $O(p)$ time. (Also cross-referenced as UMIACS-TR-90-86) To appear in IEEE Transactions on Acoustics, Speech and Signal Processing Additional files are available via anonymous ftp at: thales.cs.umd.edu in the directory pub/reports