Why Broyden's Nonsymmetric Method Terminates on linear equations

Loading...
Thumbnail Image

Files

CS-TR-3045.ps (91.96 KB)
No. of downloads: 137
CS-TR-3045.pdf (130.11 KB)
No. of downloads: 777

Publication or External Link

Date

1998-10-15

Advisor

Citation

DRUM DOI

Abstract

Abstract. The family of algorithms introduced by Broyden in 1965 for solving systems of nonlinear equations has been used quite effectively on a variety of problems. In 1979, Gay proved the then surprising result that the algorithms terminate in at most 2n steps on linear problems with n variables. His very clever proof gives no insight into properties of the intermediate iterates, however. In this work we show that Broyden's methods are projection methods, forcing the residuals to lie in a nested set of subspaces of decreasing dimension. (Also cross-referenced as UMIACS-TR-93-23)

Notes

Rights