Counting Siblings in Universal Theories

dc.contributor.authorBraunfield, Samuel
dc.contributor.authorLaskowski, Michael C.
dc.date.accessioned2023-09-18T17:58:50Z
dc.date.available2023-09-18T17:58:50Z
dc.date.issued2022-01-10
dc.description.abstractWe show that if a countable structure M in a finite relational language is not cellular, then there is an age-preserving N⊇M such that 2ℵ0 many structures are bi-embeddable with N. The proof proceeds by a case division based on mutual algebraicity.
dc.description.urihttps://doi.org/10.1017/jsl.2022.3
dc.identifierhttps://doi.org/10.13016/dspace/ugoj-kssp
dc.identifier.citationBRAUNFELD, S., & LASKOWSKI, M. (2022). COUNTING SIBLINGS IN UNIVERSAL THEORIES. The Journal of Symbolic Logic, 87(3), 1130-1155.
dc.identifier.urihttp://hdl.handle.net/1903/30521
dc.language.isoen_US
dc.publisherCambridge University Press
dc.relation.isAvailableAtCollege of Computer, Mathematical & Natural Sciencesen_us
dc.relation.isAvailableAtMathematicsen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.subjectsiblings
dc.subjectcellular
dc.subjectmutually algebraic
dc.subjectbi-embeddable
dc.titleCounting Siblings in Universal Theories
dc.typeArticle
local.equitableAccessSubmissionNo

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Braunfield & Laskowski
Size:
427.69 KB
Format:
Adobe Portable Document Format