CENTRAL DISCONTINUOUS GALERKIN METHODS ON OVERLAPPING CELLS WITH A NONOSCILLATORY HIERARCHICAL RECONSTRUCTION
CENTRAL DISCONTINUOUS GALERKIN METHODS ON OVERLAPPING CELLS WITH A NONOSCILLATORY HIERARCHICAL RECONSTRUCTION
Loading...
Files
Publication or External Link
Date
2007
Authors
LIU, YINGJIE
SHU, CHI-WANG
TADMOR, EITAN
ZHANG, MENGPING
Advisor
Citation
Y.-J. Liu, C.-W. Shu, E. Tadmor & M. Zhang (2007). Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction. SIAM Journal on Numerical Analysis, 45(6) (2007), 2442-2467.
DRUM DOI
Abstract
The central scheme of Nessyahu and Tadmor [J. Comput. Phys., 87 (1990), pp.
408–463] solves hyperbolic conservation laws on a staggered mesh and avoids solving Riemann problems
across cell boundaries. To overcome the difficulty of excessive numerical dissipation for small
time steps, the recent work of Kurganov and Tadmor [J. Comput. Phys., 160 (2000), pp. 241–282]
employs a variable control volume, which in turn yields a semidiscrete nonstaggered central scheme.
Another approach, which we advocate here, is to view the staggered meshes as a collection of overlapping
cells and to realize the computed solution by its overlapping cell averages. This leads to a
simple technique to avoid the excessive numerical dissipation for small time steps [Y. Liu, J. Comput.
Phys., 209 (2005), pp. 82–104]. At the heart of the proposed approach is the evolution of two
pieces of information per cell, instead of one cell average which characterizes all central and upwind
Godunov-type finite volume schemes. Overlapping cells lend themselves to the development of a
central-type discontinuous Galerkin (DG) method, following the series of works by Cockburn and
Shu [J. Comput. Phys., 141 (1998), pp. 199–224] and the references therein. In this paper we develop
a central DG technique for hyperbolic conservation laws, where we take advantage of the redundant
representation of the solution on overlapping cells. The use of redundant overlapping cells opens
new possibilities beyond those of Godunov-type schemes. In particular, the central DG is coupled
with a novel reconstruction procedure which removes spurious oscillations in the presence of shocks.
This reconstruction is motivated by the moments limiter of Biswas, Devine, and Flaherty [Appl.
Numer. Math., 14 (1994), pp. 255–283] but is otherwise different in its hierarchical approach. The
new hierarchical reconstruction involves a MUSCL or a second order ENO reconstruction in each
stage of a multilayer reconstruction process without characteristic decomposition. It is compact,
easy to implement over arbitrary meshes, and retains the overall preprocessed order of accuracy
while effectively removing spurious oscillations around shocks.