Dataset for "Reconstruction of electron and ion distribution functions in magnetotail reconnection diffusion region"

dc.contributor.authorNg, Jonathan
dc.contributor.authorChen, Li-Jen
dc.contributor.authorHakim, Ammar
dc.contributor.authorBhattacharjee, Amitava
dc.date.accessioned2020-02-04T22:41:40Z
dc.date.available2020-02-04T22:41:40Z
dc.date.issued2020-02
dc.descriptionDataset for the paper submitted to JGR: Space physicsen_US
dc.description.abstractIn the diffusion region of magnetotail reconnection, particle distributions are highly structured, exhibiting triangular shapes and multiple striations that deviate dramatically from the Maxwellian distribution. Fully kinetic simulations have been demonstrated to be capable of producing the essential structures of the observed distribution functions, yet are computationally not feasible for 3D global simulations. The fluid models used for large-scale simulations, on the other hand, do not have the kinetic physics necessary for describing reconnection accurately. Our study aims to bridge fully kinetic and fluid simulations by quantifying the information required to capture the non-Maxwellian features in the distributions underlying the closures used in the fluid code. We compare the results of fully kinetic simulations to observed electron velocity distributions in a magnetotail reconnection diffusion region, and use the maximum entropy model to reconstruct electron and ion distributions using various numbers of moments obtained from the simulation. Our results indicate that using only local moments, the maximum entropy model can reproduce many of the features of the distributions: (1) the anisotropic electron distributions inside the ion diffusion region but outside the current-sheet can be modelled with 10-14 moments, (2) the electron-outflow distribution with a tilted triangular structure is reproduced with 21-35 moments and (3) counterstreaming distributions can be captured with the 35-moment model when the separation in velocity space between the populations is large.en_US
dc.description.sponsorshipThis work was supported by DOE Contract DE-AC02-09CH11466 and NSF Grant AGS-1338944, DOE Grant DESC0016278, NSF Grant AGS-1619584, NASA Grant 80NSSC18K1369.en_US
dc.description.urihttps://doi.org/10.1029/2020JA027879
dc.identifierhttps://doi.org/10.13016/j1zg-nxf2
dc.identifier.urihttp://hdl.handle.net/1903/25486
dc.language.isoenen_US
dc.relation.isAvailableAtAstronomyen_us
dc.relation.isAvailableAtCollege of Computer, Mathematical & Natural Sciencesen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.subjectMagnetic reconnection, space physics, fluid closureen_US
dc.titleDataset for "Reconstruction of electron and ion distribution functions in magnetotail reconnection diffusion region"en_US
dc.typeDataseten_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
levermore_data_jgr.tar
Size:
190.03 MB
Format:
Unknown data format
Description:
Data from paper figures
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.57 KB
Format:
Item-specific license agreed upon to submission
Description: