VALUES OF ZETA FUNCTIONS OF ARITHMETIC SURFACES AT s = 1
dc.contributor.author | Lichtenbaum, Stephen | |
dc.contributor.author | Ramachandran, Niranjan | |
dc.date.accessioned | 2023-09-18T16:56:17Z | |
dc.date.available | 2023-09-18T16:56:17Z | |
dc.date.issued | 2022-02-28 | |
dc.description.abstract | We show that the conjecture of [27] for the special value at s=1 of the zeta function of an arithmetic surface is equivalent to the Birch–Swinnerton–Dyer conjecture for the Jacobian of the generic fibre. | |
dc.description.uri | https://doi.org/10.1017/S1474748022000093 | |
dc.identifier | https://doi.org/10.13016/dspace/b8j4-wrq0 | |
dc.identifier.citation | https://doi.org/10.1017/S1474748022000093 | |
dc.identifier.uri | http://hdl.handle.net/1903/30512 | |
dc.language.iso | en_US | |
dc.publisher | Cambridge University Press | |
dc.relation.isAvailableAt | College of Computer, Mathematical & Natural Sciences | en_us |
dc.relation.isAvailableAt | Mathematics | en_us |
dc.relation.isAvailableAt | Digital Repository at the University of Maryland | en_us |
dc.relation.isAvailableAt | University of Maryland (College Park, MD) | en_us |
dc.subject | zeta functions | |
dc.subject | elliptic curves | |
dc.title | VALUES OF ZETA FUNCTIONS OF ARITHMETIC SURFACES AT s = 1 | |
dc.type | Article | |
local.equitableAccessSubmission | No |