VALUES OF ZETA FUNCTIONS OF ARITHMETIC SURFACES AT s = 1

dc.contributor.authorLichtenbaum, Stephen
dc.contributor.authorRamachandran, Niranjan
dc.date.accessioned2023-09-18T16:56:17Z
dc.date.available2023-09-18T16:56:17Z
dc.date.issued2022-02-28
dc.description.abstractWe show that the conjecture of [27] for the special value at s=1 of the zeta function of an arithmetic surface is equivalent to the Birch–Swinnerton–Dyer conjecture for the Jacobian of the generic fibre.
dc.description.urihttps://doi.org/10.1017/S1474748022000093
dc.identifierhttps://doi.org/10.13016/dspace/b8j4-wrq0
dc.identifier.citationhttps://doi.org/10.1017/S1474748022000093
dc.identifier.urihttp://hdl.handle.net/1903/30512
dc.language.isoen_US
dc.publisherCambridge University Press
dc.relation.isAvailableAtCollege of Computer, Mathematical & Natural Sciencesen_us
dc.relation.isAvailableAtMathematicsen_us
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_us
dc.relation.isAvailableAtUniversity of Maryland (College Park, MD)en_us
dc.subjectzeta functions
dc.subjectelliptic curves
dc.titleVALUES OF ZETA FUNCTIONS OF ARITHMETIC SURFACES AT s = 1
dc.typeArticle
local.equitableAccessSubmissionNo

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lichtenbaum & Ramachandran
Size:
666.51 KB
Format:
Adobe Portable Document Format