Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On the Convergence of Ritz Values, Ritz Vectors, and Refined Ritz Vectors\symbolmark

    Thumbnail
    View/Open
    CS-TR-3986.ps (147.2Kb)
    No. of downloads: 131

    Auto-generated copy of CS-TR-3986.ps (186.2Kb)
    No. of downloads: 530

    Date
    1999-01-29
    Author
    Jai, Zhongxiao
    Stewart, G. W.
    Metadata
    Show full item record
    Abstract
    This paper concerns the Rayleigh--Ritz method for computing an approximation to an eigenpair $(\lambda, x)$ of a non-Hermitian matrix $A$. Given a subspace $\clw$ that contains an approximation to $x$, this method returns an approximation $(\mu, \tilde x)$ to $(\lambda, x)$. We establish four convergence results that hold as the deviation $\epsilon$ of $x$ from $\clw$ approaches zero. First, the Ritz value $\mu$ converges to $\lambda$. Second, if the residual $A\tilde x-\mu\tilde x$ approaches zero, then the Ritz vector $\tilde x$ converges to $x$. Third, we give a condition on the eigenvalues of the Rayleigh quotient from which the Ritz pair is computed that insures convergence of the Ritz vector. Finally, we show that certain unconditionally. (Also cross-referenced as UMIACS-TR-99-08)
    URI
    http://hdl.handle.net/1903/993
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility