Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Boundary Conditions in Approximate Commutator Preconditioners for the Navier-Stokes Equations

    Thumbnail
    View/Open
    tr.pdf (2.564Mb)
    No. of downloads: 779

    Date
    2009-02
    Author
    Elman, Howard C.
    Tuminaro, Ray S.
    Metadata
    Show full item record
    Abstract
    Boundary conditions are analyzed for a class of preconditioners used for the incompressible Navier-Stokes equations. We consider pressure convection-diffusion preconditioners [8,12] as well as least-square commutator methods [2,3], both of which rely on commutators of certain differential operators. The effectiveness of these methods has been demonstrated in various studies, but both methods also have some deficiencies. For example, the pressure convection-diffusion preconditioner requires the construction of a Laplace and a convection--diffusion operator, together with some choices of boundary conditions. These boundary conditions are not well understood, and a poor choice can critically affect performance. This paper looks closely at properties of commutators near domain boundaries. We show that it is sometimes possible to choose boundary conditions to force the commutators of interest to be zero at boundaries, and this leads to a new strategy for choosing boundary conditions for the purpose of specifying preconditioning operators. With the new preconditioners, Krylov subspace methods display noticeably improved performance for solving the Navier-Stokes equations; in particular, mesh-independent convergence rates are observed for some problems for which previous versions of the methods did not exhibit this behavior.
    URI
    http://hdl.handle.net/1903/8940
    Collections
    • Technical Reports from UMIACS

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility