Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Presentation Planning for Distributed Video Systems

    Thumbnail
    View/Open
    CS-TR-3723.ps (445.8Kb)
    No. of downloads: 196

    Auto-generated copy of CS-TR-3723.ps (347.0Kb)
    No. of downloads: 816

    Date
    1998-10-15
    Author
    Hwang, Eenjun
    Prabhakaran, B.
    Subrahmanian, V.S.
    Metadata
    Show full item record
    Abstract
    A distributed video-on-demand system is one where a collection of video data is located at dispersed sites across a computer network. In a single-site environment, a local video server retrieves video data from its local storage device (or devices). However, in the setting of a distributed VoD system, when a customer requests a movie from his/her local server, the server may need to interact with other servers located across the network. In this paper, we present three types of presentation plans, that a local server must construct in order to satisfy the customer's request. Informally speaking, a presentation plan is a detailed (temporally synchronized) sequence of steps that the host server must perform at given points in time. This involves obtaining committments from other video servers, obtaining committments from the network service provider, as well as making committments of local resources, within the limitations of available bandwidth, available buffer, and customer/client data consumption rates. The three types of plans described in this paper all work at different "levels of abstraction" in this planning process. Furthermore, we introduce two measures of how good a plan is: minimizing wait time for the customer, and minimizing a quantity called access bandwidth (which informally speaking, specifies how much network/disk bandwidth is used). We develop algorithms to compute optimal (w.r.t. the above measures) plans for all three types, and show experimentally that in all three cases, one of the three types of plans (called a hybrid presentation plan) systematically outperforms the other two. In addition to these new concepts, our framework has the advantage that many results that had previously been verified experimentally in the literature can now be conclusively proved mathematically. (Also cross-referenced as UMIACS-TR-96-91)
    URI
    http://hdl.handle.net/1903/863
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility