Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance of On-Line Learning Methods in Predicting Multiprocessor Memory Access Patterns

    Thumbnail
    View/Open
    CS-TR-3676.ps (733.0Kb)
    No. of downloads: 219

    Auto-generated copy of CS-TR-3676.ps (548.4Kb)
    No. of downloads: 579

    Date
    1998-10-15
    Author
    Sakr, Majd F.
    Levitan, Steven P.
    Chiarulli, Donald M.
    Horne, Bill G.
    Giles, C. Lee
    Metadata
    Show full item record
    Abstract
    Shared memory multiprocessors require reconfigurable interconnection networks (INs) for scalability. These INs are reconfigured by an IN control unit. However, these INs are often plagued by undesirable reconfiguration time that is primarily due to control latency, the amount of time delay that the control unit takes to decide on a desired new IN configuration. To reduce control latency, a trainable prediction unit (PU) was devised and added to the IN controller. The PU's job is to anticipate and reduce control configuration time, the major component of the control latency. Three different on-line prediction techniques were tested to learn and predict repetitive memory access patterns for three typical parallel processing applications, the 2-D relaxation algorithm, matrix multiply and Fast Fourier Transform. The predictions were then used by a routing control algorithm to reduce control latency by configuring the IN to provide needed memory access paths before they were requested. Three prediction techniques were used and tested: 1). a Markov predictor, 2). a linear predictor and 3). a time delay neural network (TDNN) predictor. As expected, different predictors performed best on different applications, however, the TDNN produced the best overall results. (Also cross-referenced as UMIACS-TR-96-59)
    URI
    http://hdl.handle.net/1903/840
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility