Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Approximation Algorithms for Connected Dominating Sets

    Thumbnail
    View/Open
    CS-TR-3660.ps (205.5Kb)
    No. of downloads: 185

    Auto-generated copy of CS-TR-3660.ps (228.4Kb)
    No. of downloads: 5754

    Date
    1998-10-15
    Author
    Guha, Sudipto
    Khuller, Samir
    Metadata
    Show full item record
    Abstract
    The dominating set problem in graphs asks for a minimum size subset of vertices with the following property: each vertex is required to either be in the dominating set, or adjacent to some node in the dominating set. We focus on the question of finding a {\em connected dominating set} of minimum size, where the graph induced by vertices in the dominating set is required to be {\em connected} as well. This problem arises in network testing, as well as in wireless communication. Two polynomial time algorithms that achieve approximation factors of $O(H(\Delta))$ are presented, where $\Delta$ is the maximum degree, and $H$ is the harmonic function. This question also arises in relation to the traveling tourist problem, where one is looking for the shortest tour such that each vertex is either visited, or has at least one of its neighbors visited. We study a generalization of the problem when the vertices have weights, and give an algorithm which achieves a performance ratio of $3 \ln n$. We also consider the more general problem of finding a connected dominating set of a specified subset of vertices and provide an $O(H(\Delta))$ approximation factor. To prove the bound we also develop an optimal approximation algorithm for the unit node weighted Steiner tree problem. (Also cross-referenced as UMIACS-TR-96-47)
    URI
    http://hdl.handle.net/1903/830
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility