Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Computer Science Research Works
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Computer Science Research Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A unified model explaining the offsets of overlapping and near-overlapping prokaryotic genes.

    Thumbnail
    View/Open
    OverlappingGenesReprint.pdf (219.5Kb)
    No. of downloads: 571

    Date
    2007
    Author
    Kingsford, Carl
    Delcher, Arthur L.
    Salzberg, Steven L.
    Citation
    A unified model explaining the offsets of overlapping and near-overlapping prokaryotic genes. C. Kingsford, A.L. Delcher, and S.L. Salzberg. Molec. Biol. and Evol 24:9 (2007), 2091-98.
    Metadata
    Show full item record
    Abstract
    Overlapping genes are a common phenomenon. Among sequenced prokaryotes, more than 29% of all annotated genes overlap at least 1 of their 2 flanking genes. We present a unified model for the creation and repair of overlaps among adjacent genes where the 3# ends either overlap or nearly overlap. Our model, derived from a comprehensive analysis of complete prokaryotic genomes in GenBank, explains the nonuniform distribution of the lengths of such overlap regions far more simply than previously proposed models. Specifically, we explain the distribution of overlap lengths based on random extensions of genes to the next occurring downstream stop codon. Our model also provides an explanation for a newly observed (here) pattern in the distribution of the separation distances of closely spaced nonoverlapping genes. We provide evidence that the newly described biased distribution of separation distances is driven by the same phenomenon that creates the uneven distribution of overlap lengths. This suggests a dynamic picture of continual overlap creation and elimination.
    URI
    http://hdl.handle.net/1903/7986
    Collections
    • Computer Science Research Works

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility