Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Practical Parallel Algorithms for Dynamic Data Redistribution, Median Finding, and Selection

    Thumbnail
    View/Open
    CS-TR-3494.ps (1.116Mb)
    No. of downloads: 268

    Auto-generated copy of CS-TR-3494.ps (393.9Kb)
    No. of downloads: 1347

    Date
    1998-10-15
    Author
    Bader, David A.
    JaJa, Joseph
    Metadata
    Show full item record
    Abstract
    A common statistical problem is that of finding the median element in a set of data. This paper presents a fast and portable parallel algorithm for finding the median given a set of elements distributed across a parallel machine. In fact, our algorithm solves the general selection problem that requires the determination of the element of rank $i$, for an arbitrarily given integer $i$. Practical algorithms needed by our selection algorithm for the dynamic redistribution of data are also discussed. Our general framework is a single-address space, distributed memory programming model that is enhanced by a set of communication primitives. We use efficient techniques for distributing, coalescing, and load balancing data as well as efficient combinations of task and data parallelism. The algorithms have been coded in Split-C and run on a variety of platforms, including the Thinking Machines CM-5, IBM SP-1 and SP-2, Cray Research T3D, Meiko Scientific CS-2, Intel Paragon, and workstation clusters. Our experimental results illustrate the scalability and efficiency of our algorithms across different platforms and improve upon all the related experimental results known to the authors. More efficient implementations of the communication primitives will likely result in even faster execution times. (Also cross-referenced as UMIACS-TR-95-44.)
    URI
    http://hdl.handle.net/1903/742
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility