Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Allocation and Scheduling of Real-Time Periodic Tasks with Relative Timing Constraints

    Thumbnail
    View/Open
    CS-TR-3402.ps (410.3Kb)
    No. of downloads: 498

    Auto-generated copy of CS-TR-3402.ps (246.5Kb)
    No. of downloads: 990

    Date
    1998-10-15
    Author
    Cheng, Sheng-Tzong
    Agrawala, Ashok K.
    Metadata
    Show full item record
    Abstract
    Allocation problem has always been one of the fundamental issues of building the applications in distributed computing systems (DCS). For real-time applications on DCS, the allocation problem should directly address the issues of task and communication scheduling. In this context, the allocation of tasks has to fully utilize the available processors and the scheduling of tasks has to meet the specified timing constraints. Clearly, the execution of tasks under the allocation and schedule has to satisfy the precedence, resources, and other synchronization constraints among them. Recently, the timing requirements of the real-time systems emerge that the relative timing constraints are imposed on the consecutive executions of each task and the inter-task temporal relationships are specified across task periods. In this paper we consider the allocation and scheduling problem of the periodic tasks with such timing requirements. Given a set of periodic tasks, we consider the least common multiple (LCM) of the task periods. Each task is extended to several instances within the LCM. The scheduling window for each task instance is derived to satisfy the timing constraints. We develop a simulated annealing algorithm as the overall control algorithm. An example problem of the sanitized version of the Boeing 777 Aircraft Information Management System is solved by the algorithm. Experimental results show that the algorithm solves the problem in a reasonable time complexity. (Also cross-referenced as UMIACS-TR-95-6)
    URI
    http://hdl.handle.net/1903/691
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility