Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Localization in Graphs

    Thumbnail
    View/Open
    CS-TR-3326.ps (141.9Kb)
    No. of downloads: 403

    Auto-generated copy of CS-TR-3326.ps (141.6Kb)
    No. of downloads: 663

    Date
    1998-10-15
    Author
    Khuller, Samir
    Raghavachari, Balaji
    Rosenfeld, Azriel
    Metadata
    Show full item record
    Abstract
    Navigation can be studied in a graph-structured framework in which the navigating agent (which we shall assume to be a point robot) moves from node to node of a ``graph space''. The robot can locate itself by the presence of distinctively labeled ``landmark'' nodes in the graph space. For a robot navigating in Euclidean space, visual detection of a distinctive landmark provides information about the direction to the landmark, and allows the robot to determine its position by triangulation. On a graph, however, there is neither the concept of direction nor that of visibility. Instead, we shall assume that a robot navigating on a graph can sense the distances to a set of landmarks. Evidently, if the robot knows its distances to a sufficiently large set of landmarks, its position on the graph is uniquely determined. This suggests the following problem: given a graph, what are the fewest number of landmarks needed, and where should they be located, so that the distances to the landmarks uniquely determine the robot's position on the graph? This is actually a classical problem about metric spaces. A minimum set of landmarks which uniquely determine the robot's position is called a ``metric basis'', and the minimum number of landmarks is called the ``metric dimension'' of the graph. In this paper we present some results about this problem. Our main {\em new\/} result is that the metric dimension can be approximated in polynomial time within a factor of $O(\log n)$; we also establish some properties of graphs with metric dimension 2. (Also cross-referenced as UMIACS-TR-94-92)
    URI
    http://hdl.handle.net/1903/655
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility