Show simple item record

Updating URV Decompositions in Parallel

dc.contributor.authorStewart, G. W.en_US
dc.date.accessioned2004-05-31T22:22:22Z
dc.date.available2004-05-31T22:22:22Z
dc.date.created1992-04en_US
dc.date.issued1998-10-15en_US
dc.identifier.urihttp://hdl.handle.net/1903/570
dc.description.abstractA URV decomposition of a matrix is a factorization of the matrix into the product of a unitary matrix (U), an upper triangular matrix (R), and another unitary matrix (V). In an earlier paper [UMIACS-TR-90-86] it was shown how to update a URV decomposition in such a way that it reveals the effective rank of the matrix. It was also argued that the updating procedure could be implemented in parallel on a linear array of processors; however, no specific algorithms were given. This paper gives a detailed implementation of the updating procedure. (Also cross-referenced as UMIACS-TR-92-44)en_US
dc.format.extent175709 bytes
dc.format.mimetypeapplication/postscript
dc.language.isoen_US
dc.relation.ispartofseriesUM Computer Science Department; CS-TR-2880en_US
dc.relation.ispartofseriesUMIACS; UMIACS-TR-90-86en_US
dc.relation.ispartofseriesUMIACS; UMIACS-TR-92-44en_US
dc.titleUpdating URV Decompositions in Parallelen_US
dc.typeTechnical Reporten_US
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_US
dc.relation.isAvailableAtUniversity of Maryland (College Park, Md.)en_US
dc.relation.isAvailableAtTech Reports in Computer Science and Engineeringen_US
dc.relation.isAvailableAtUMIACS Technical Reportsen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record