Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports of the Computer Science Department
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports of the Computer Science Department
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Convex Optimization Approach for Addressing Storage-Communication Tradeoffs in Multicast Encryption

    Thumbnail
    View/Open
    CS-TR-4082.ps (513.6Kb)
    No. of downloads: 244

    Auto-generated copy of CS-TR-4082.ps (236.5Kb)
    No. of downloads: 744

    Date
    1999-11-05
    Author
    Poovendran, Radha
    Metadata
    Show full item record
    Abstract
    In Eurocrypt'99, Canetti, Malkin, and Nissim [1], presented a new tree based key distribution algorithm that required sublinear storage of keys while preserving logarithmic update communication as functions of the group size. The results in are known to be the first results presenting the sub-linear storage among the family of tree based key distribution schemes. The question of whether this storage was the possible optimal value while keeping the communication as logarithmic was posed as a problem. We show that the storage-communication tradeoff can be formulated as a convex optimization problem in terms of the size of the minimal storage parameter defined in. In particular, we show that the optimal solution is parameterizable by the ratio of the communication and storage costs, the degree of the tree, and the group size. Using this design triplet, we show that not only the results in [1] but also the results of the basic scheme of Wallner, Harder, and Agee [2] can be derived as specific Pareto optimal points for specific choice of the triplet. We also present an exact design procedure for feasibility testing and constructing optimal key distribution tree of the type in. We also show that if the communication and the storage are equally weighted, then the optimal value for storage and communication grows as square root of group size , a value noted in [1].
    URI
    http://hdl.handle.net/1903/511
    Collections
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility